
Minisoft
®

 Middleware

ODBC/32
®

 Driver

JDBC Driver

OLE DB Data Provider

Version 3.0.0

Minisoft, Inc. Minisoft Marketing AG

1024 First Street Papiermühleweg 1

Snohomish, WA 98290 Postfach 107

U.S.A. Ch-6048 Horw

 Switzerland

1-800-682-0200 Phone: +41-41-340 23 20

360-568-6602 Fax: +41-41-340 38 66

Fax: 360-568-2923 minisoftag@centralnet.ch

 Internet access:

 sales@minisoft.com

 support@minisoft.com

 http//www.minisoft.com

mailto:sales@minisoft.com
mailto:support@minisoft.com

 Page | 2

Disclaimer

The information contained in this document is subject to change without notice. Minisoft,

Inc. makes no warranty of any kind with regard to this material, including, but not limited

to, the implied warranties of merchantability and fitness for a particular purpose.

Minisoft, Inc. or its agents shall not be liable for errors contained herein or for incidental

or consequential damages in connection with the furnishings, performance, or use of this

material.

This document contains proprietary information which is protected by copyright. All

rights are reserved. No part of this document may be photocopied, reproduced, or

translated to another programming language without the prior written consent of

Minisoft, Inc.

©1997-2007 by Minisoft, Inc., Printed in U.S.A.

All product names and services identified in this document are trademarks or registered

trademarks of their respective companies and are used throughout this document in

editorial fashion only and are not intended to convey an endorsement or other affiliation

with Minisoft, Inc.

 Page | 3

License Agreement

In return for payment of a onetime fee for this software product, the Customer receives

from Minisoft, Inc. a license to use the product subject to the following terms and

conditions:

 The product may be used on one computer system at a time: i.e., its use is not

limited to a particular machine or user but to one machine at a time.

 The software may be copied for archive purposes, program error verification, or

to replace defective media. All copies must bear copyright notices contained in

the original copy.

 The software may not be installed on a network server for access by more than

one personal computer without written permission from Minisoft, Inc.

Purchase of this license does not transfer any right, title, or interest in the software

product to the Customer except as specifically set forth in the License Agreement, and

Customer is on notice that the software product is protected under the copyright laws.

 Page | 4

90-Day Limited Warranty

Minisoft, Inc. warrants that this product will execute its programming instructions when

properly installed on a properly configured personal computer for which it is intended.

Minisoft, Inc. does not warrant that the operation of the software will be uninterrupted or

error free. In the event that this software product fails to execute its programming

instructions, Customer‟s exclusive remedy shall be to return the product to Minisoft, Inc.

to obtain replacement. Should Minisoft, Inc. be unable to replace the product within a

reasonable amount of time, Customer shall be entitled to a refund of the purchase price

upon the return of the product and all copies. Minisoft, Inc. warrants the medium upon

which this product is recorded to be free from defects in materials and workmanship

under normal use for a period of 90 days from the date of purchase. During the warranty

period Minisoft, Inc. will replace media which prove to be defective. Customer‟s

exclusive remedy for any media which proves to be defective shall be to return the media

to Minisoft, Inc. for replacement.

ANY IMPLIED WARRANTY OF MERCHANTABILITY OR FITNESS IS LIMITED

TO THE 90-DAY DURATION OF THIS WRITTEN WARRANTY. Some states or

provinces do not allow limitations on how long an implied warranty lasts, so the above

limitation or exclusion may not apply to you. This warranty gives you specific rights, and

you may also have other rights which vary from state to state or province to province.

LIMITATION OF WARRANTY: Minisoft, Inc. makes no other warranty expressed or

implied with respect to this product. Minisoft, Inc. specifically disclaims the implied

warranty of merchantability and fitness for a particular purpose.

EXCLUSIVE REMEDIES: The remedies herein are Customer‟s sole and exclusive

remedies. In no event shall Minisoft, Inc. be liable for any direct, indirect, special,

incidental, or consequential damages, whether based on contract, tort, or any other legal

theory.

 Page | 5

Contents

Disclaimer ... 2

License Agreement .. 3

90-Day Limited Warranty ... 4

1. Introduction ... 12

Which product is right for you? ... 12

What is ODBC? ... 12

What is JDBC? .. 13

What is OLE DB? .. 13

Other Products ... 14

2. How it works ... 15

Environments ... 15

Components ... 15

Server ... 15

Client ... 16

Administrative Tools ... 16

Documentation .. 16

3. Installation ... 17

Sources .. 17

From our web site .. 17

Optional Media .. 17

Installing Servers ... 17

 Page | 6

Installing the server application on MPE/iX ... 17

Installing the server application on HPUX .. 18

Installing the server application on Linux ... 20

Installing the server application on Windows ... 20

Installing Clients .. 21

Installing the Minisoft ODBC/32 driver .. 21

Installing the Minisoft JDBC driver .. 21

Installing the Minisoft OLE DB data provider .. 22

Installing the Administrative Tools ... 22

Installing Minisoft ODBC/32 PC Administrator ... 22

ODBC/32 Deployment .. 22

Web server deployment ... 22

Development for each desktop .. 23

Reporting tools .. 23

Upgrading ODBC/32 ... 23

4. Client Configuration .. 25

Configuring a data source .. 25

Using Schema Editor Files .. 29

Using database files ... 30

Using Self-describing files .. 32

Using Translation Tables with ODBC/32 ... 33

Advanced Options ... 34

Creating a Standalone File DSN .. 35

Standalone File DSN Example .. 35

 Page | 7

SQLDriverConnect .. 36

Connection Properties ... 37

Translation Tables ... 43

Making XLAT Files .. 44

5. Server Configuration ... 45

Common Options .. 45

How options are configured .. 45

Startup Parameters ... 45

Environment Variables .. 47

MPE Specific ... 49

Modifying SETVAR statements .. 49

Using Indirect files .. 49

UNIX Specific ... 50

inetd ... 50

6. Schema Editor ... 51

Introduction ... 51

Schema Editor Menu Bar Definitions ... 52

Connection to your HP e3000 ... 53

Opening a Schema Editor file .. 54

Saving a schema .. 55

Creating a Schema for KSAM and MPE files ... 56

Creating a table .. 57

Creating a schema for a TurboImage database .. 58

Database Dataset Properties .. 60

 Page | 8

Creating a schema for Self-describing files ... 61

Adding and editing items ... 62

Record based ... 63

Adding and editing keys (indexes) - KSAM only ... 64

Adding calculated items .. 65

To create a calculated item: ... 65

SQL Examples ... 66

MPE Data Types.. 67

Using Dates ... 67

ManMan Dates .. 69

Data conversion ... 70

Importing PowerHouse Definition Language .. 71

Using QSHOW to generate a new PDL file .. 72

7. Catalog Editor .. 74

Introduction to the Catalog Editor ... 74

Catalog Editor user interface ... 78

8. Using ODBC/32 .. 82

MS Access ... 82

Using MSAccess to change or add data with Minisoft‟s 32-bit ODBC driver 87

Using MSAccess to insert an address from an Image database with ODBC/32 87

Using SQL Server.. 92

SQL Server Linked Servers ... 92

Sample Application ... 94

Creating the ODBC Data Source ... 94

 Page | 9

Configuring a linked server ... 95

Creating sample application using the development tools .. 96

MS Excel ... 100

Seagate‟s Crystal Reports .. 104

Crystal Reports three table join ... 109

9. Using JDBC ... 111

JDBC Classes and Interfaces ... 111

The Big Four ... 111

Registering the driver .. 111

Connecting to a database ... 112

Connecting using connection properties .. 112

Creating a Statement Object .. 113

Exiting JDBC... 114

Prepared Statements and Parameters ... 115

Metadata .. 116

Adding, Updating and Deleting Data .. 118

JDBC API Reference ... 119

DriverManager Methods ... 119

Connection Methods .. 121

Statement Methods .. 123

PreparedStatement Methods .. 123

ResultSet Methods ... 125

ResultSetMetaData Methods ... 126

DatabaseMetaData Methods .. 127

 Page | 10

10. Using OLE DB .. 132

Building Client/Server Applications ... 132

FAQ ... 132

How do I create a Connection String? ... 132

How do I create a Linked Server? ... 133

How do I use character string searches in four part names with SQL Server 2005? 134

A. Third-Party Indexing ... 136

Specifying values for TPI keys .. 136

For X and U type items ... 136

For numeric type items .. 137

Selection criteria for composite keys ... 138

B. Technical Support .. 139

Frequently Asked Questions .. 139

Tracing Facilities ... 141

Driver (Client) Side Tracing .. 141

Server (Host) Side Tracing .. 145

Troubleshooting ... 147

First UNIX Connection ... 147

Using DBUTIL to find database passwords .. 148

C. SQL Functions ... 149

Using SQL Functions .. 149

SQL Function List ... 149

String Functions... 149

Numeric Functions .. 151

 Page | 11

Date Functions ... 151

Misc Functions .. 152

D. MSJOB on MPE .. 153

Controlling MSJOB ... 153

Overview of MSJOB ... 153

Parameters ... 153

Control ... 156

Server Console... 157

MSJOBCMD ... 157

IP Security ... 159

Overview ... 159

Parameters ... 160

Sample ... 160

Index .. 161

 Page | 12

1. Introduction

Which product is right for you?

Minisoft provides a suite of products to allow cross platform access to information. No

one size fits all or universal tool will permit the wide variety of applications and

environments our customers need. The ODBC and JDBC drivers and the OLE DB data

provider are standards based interfaces to access your data.

All three products allow you read and write to TurboImage and Eloquence as if they were

like any other database. They also support advanced features such as access to multiple

databases, KSAM, flat, and MPE files. The server can be installed on MPE as well as

many UNIX and Windows systems supporting Eloquence®, flat files, or Robelle® SD

files.

All Minisoft client server products can coexist on your server. This will allow you to

provide all the interfaces needed by your developers or software suppliers without

concern for compatibility.

What is ODBC?

Open Database Connectivity (ODBC) is a standard or open application programming

interface (API) for accessing a database. SQL statements will allow you to access files in

a number of different databases. This includes MS Access, Excel, Impromptu, Lotus

Approach, Visual Basic, Crystal Reports, FrontPage, Cold Fusion, Speedware, Esperant,

Brio, Delphi, PowerBuilder, Active Server Pages, BusinessObjects, .NET etc. In addition

to the ODBC software that is built into each compliant program, a separate module or

driver will be needed for each database you want to access.

 Page | 13

ODBC is based on and closely associated with the Open Group standard Structured

Query Language (SQL) Call-Level Interface. ODBC allows programs to use SQL

requests that will access databases without having to know the proprietary interfaces to

the databases. ODBC handles the SQL request and converts it into a request the

individual database system understands.

What is JDBC?

Java Database Connectivity Driver (JDBC) is a standard or open application-

programming interface (API) for accessing a database from JAVA programs. The

Minisoft JDBC driver implements this API to give JAVA programs access to data in

TurboImage and Eloquence® databases, KSAM files, MPE files, Self-describing files,

and PowerHouse sub-files.

JDBC is based on and closely aligned with the Open Group standard Structured Query

Language (SQL) Call-Level Interface. It allows programs to use SQL requests that will

access databases without having to know the proprietary interfaces to the databases. The

JDBC driver handles the SQL request and converts it into a request the individual

database system understands.

What is OLE DB?

"OLE DB" opens the door to a rich set of development tools and platforms for Microsoft

Windows Servers. Microsoft has announced that OLE DB will be the method by which

all information is accessed. The roadmap for future Microsoft applications requires using

OLE DB data sources to "provide uniform access to data stored in diverse information

sources". The Minisoft OLE DB Provider provides that access to your existing

TurboImage and Eloquence databases.

Use the Minisoft OLE DB Provider for Image/Eloquence to help solve the following

problems:

 Transparent access to your Image/Eloquence data from the 32-bit or 64-bit

 Page | 14

editions of SQL Server 2005.

 Integrate Image or Eloquence database access smoothly into your .NET

application development environment.

 Continue accessing Image or Eloquence data with Microsoft Visual Studio,

Borland development tools, Microsoft Access (through VBA),Microsoft Excel,

ActiveX Scripts, Crystal Reports, Windows Scripting, IIS web applications (ASP

and ASP.NET) by using the Minisoft OLE DB Provider.

Other Products

Minisoft also provides Middleware that permits MPE calls from client systems to your

host data using the familiar TurboImage and MPE intrinsic calls. Please contact your

Minisoft sales office for details on MiddleMan if you need this option.

For those customers needing concurrent access to their existing host based applications,

Minisoft provides a variety of terminal emulation packages on many different client

platforms including; Windows, Pocket PC, Mac OSX, and java enabled browsers.

 Page | 15

2. How it works

Environments

The choice of installation files and procedures will depend on your operating

environment. The product is provided as a client/server application. Clients are the

system used to present the data. Servers are the system used to store the data. A common

configuration would be an MPE Server with an Image database being accessed by a

Windows Client running MS Excel. You may also access data on a UNIX or Windows

server with an Eloquence database from Windows, Mac, or UNIX clients.

With proper licensing, there are many combinations of clients and servers which will

enable you to access your information. Please contact Minisoft for a current list of

supported platforms or to request support for an additional platform.

Components

Minisoft‟s ODBC/32 product consists of three components: the server, client, and

administrative tools along with documentation.

Server

The Server component is installed on the system where the database resides. The server

will run in background or foreground processes and listen on one or more TCP ports.

Licensing information for both the server and clients are stored on the server.

An instance of the server process is launched for each connection made by a client. The

process runs its own security context.

On MPE/iX based systems, the server is run from a common Minisoft background

process (MSJOB). On UNIX based platforms, the server is usually run from inetd. A

 Page | 16

Windows service has been created to control the server as a set of background processes

on Windows Servers. The server may also be run from a shell, command prompt, or

script.

Client

The Client component is installed on the system where the ODBC/JDBC/OLDEB calls

are made. This can be a workstation running Access, Excel or Crystal Reports. It could

also be an application server running, for example, SQL Server, IIS, or Oracle. Clients

for ODBC can be Windows, Mac OSX, Sun, AIX, HPUX, or Linux. OLE DB is

currently available only on Windows. JDBC can run from any Java 5 or later system on

your network.

Administrative Tools

The installation of Administrative Tools is optional. They are installed on any currently

supported Windows desktop operating system.

These tools consist of the Schema Editor and the Catalog Editor. The Schema Editor (see

page 51) provides for control of the data type and name mapping. The Catalog Editor (see

page 74) provides very fine control of access to tables and items.

Documentation

The primary reference will be this manual. The Minisoft web site

(http://www.minisoft.com) will contain updates, addenda, samples, and other pages of

interest.

http://www.minisoft.com/

 Page | 17

3. Installation

Sources

From our web site

After registering, you can download the required files based upon the client/server

environment you will be using.

The current version of this manual is stored at our web site in PDF format.

Optional Media

Our products can be shipped on CD or other media for off-net installation.

Installing Servers

Installing the server application on MPE/iX

Installation only needs to be done from one PC – not each individual PC. No terminal

emulator is needed for this installation. You must have “System Manager” permission to

do this.

The installation is in two parts. The first is a common set of files used by all Minisoft

Servers (ODBC/JDBC/OLEDB/MiddleMan). The other is an application specific server.

Installing the MSJOB files on MPE/iX

Run “install_msjob.exe” from a Windows based PC. Follow the on-screen prompts.

Installing the Servers on MPE/iX

Run “install_odbc####.exe from a Windows based PC. Follow the on-screen prompts.

 Page | 18

Installing the server application on HPUX

Installing server files

1. Place all files in the /opt/minisoft directory. Be sure that the directory is readable and

executable from public.

2. Create a symbolic link to your system specific Eloquence library. Choose the ONE best

library that matches your HPUX system.

/opt/eloquence6/lib/pa11_32/libimage3k.sl

/opt/eloquence6/lib/pa20_32/libimage3k.sl

/opt/eloquence6/lib/pa20_64/libimage3k.sl

/opt/eloquence6/lib/hpux32/libimage3k.sl

/opt/eloquence6/lib/hpux64/libimage3k.sl

For example, if you have a newer PA-RISC system, use:

ln -s /opt/eloquence6/lib/pa20_32/libimage3k.sl \

 /usr/lib/libimage3k.sl

Configuring system files

1. Append the following to your /etc/inetd.conf file:

 #

 # odbcsrvr.exe

 #

 odbcsrvr stream tcp nowait root /opt/minisoft/odbcsrvr.exe odbcsrvr.exe

/S

 #

 # odbcsrvr.exe with trace enabled

 #

 #odbcsrvr stream tcp nowait root /opt/minisoft/odbcsrvr.exe odbcsrvr.exe

/S /T

2. Append the following to your /etc/services file:

 Page | 19

 #

 # Minisoft odbcsrvr.exe

 #

 odbcsrvr 30006/tcp

3. Append the following to your /etc/pam.conf file:

PAM configuration

odbcsrvr.exe auth required /usr/lib/security/libpam_unix.1

odbcsrvr.exe account optional /usr/lib/security/libpam_unix.1

odbcsrvr.exe password required /usr/lib/security/libpam_unix.1

4. For sam to work without error, append /opt/minisoft to the end of

(/var/sam/ts/pam_dir.reg).

5. Report the System ID and System Name (see license.exe below) to your Minisoft sales

office. Follow the directions returned to license the product.

6. Restart inetd using the command:

#inetd -c

Getting information for licensing

Please report the value from this utility so that a License Number can be generated for your

system.

This is a HP-UX (11) executable. Place it in the directory "/opt/minisoft". When run, it should

display the System ID and System Name:

#/opt/minisoft/license.exe

System ID = [541750568]

System Name = [HP-UX B.11.00 9000/800]

 Page | 20

Use one of the following parameters:

1 - View license information

2 - License a product

5 - Create license file

6 - View license for a product

Send this information to your Minisoft sales representative. When you receive your reply, follow

the following directions:

1. Create an empty license file:

#cd /opt/minisoft

#touch MSLICFIL

#./license.exe 5 "your company name"

2. Execute /opt/minisoft/license.exe with the parameters as supplied in the reply.

#/opt/minisoft/license.exe 2

System ID = [1234567890]

System Name = [HP-UX B.11.00 9000/800]

Product ID to License ? 4

User Limit ? 0

Expiration Date ? 20071201

Extension code ? 1976153532

Installing the server application on Linux

Installing server files

Installing the server application on Windows

Installing server files

 Page | 21

Installing Clients

Installing the Minisoft ODBC/32 driver

Windows

You must install the Minisoft ODBC/32 PC client on each network PC that will be

running ODBC/32. To do this:

1. Execute odbcxxxc.exe from your ODBC/32 CD.

2. This must be executed on every Windows client that will be accessing data

on the server.

Mac OSX

AIX

HPUX

Linux

Solaris

Installing the Minisoft JDBC driver

JDBC connections require two client components. The first is a jar file which contains

the “classes” used by your Java applications. The second is a native application

component. The native component can be used as a shared library on the same system as

the jar file or as a Mid Tier Listener on the client, the server, or a third box. The primary

need for a Mid Tier Listener or three tier approach will be when the java application is

run inside a browser. The Mid Tier would in those cases be on the web server used. This

configuration reduces “sandbox” issues with java network communications.

 Page | 22

Jar file

Shared Library

Mid Tier Listener

Installing the Minisoft OLE DB data provider

Installing the Administrative Tools

Installing Minisoft ODBC/32 PC Administrator

Note that the administrative tools installation is not necessary to run any of the clients.

1. Execute odbcxxxa.exe.

2. Follow the on screen instructions.

ODBC/32 Deployment

The following instructions detail methods to distribute the Minisoft ODBC/32 driver to

multiple workstations after completing your development. You should review the items

listed below and choose the distribution scheme that best suites your environment:

 Web server deployment

 Development for each desktop

 Reporting tools (Crystal Reports, Access, Excel, etc.)

Note: Be certain to use the same driver version for all clients. The MSJOB background

process has the capability to operate multiple versions of each driver to aid in managing

future driver upgrades.

Web server deployment

Install ODBC/32 client on your web server(s) by executing odbcxxxc.exe from your CD

 Page | 23

or via the web.

If you are using DSNs to access the ODBC driver, create a System DSN. Web servers

usually operate without a current user. The DSN must be available to system level

processes. Do not use question marks (?) in DSN fields. User interaction is not possible

from the browser to complete the connection request. Use care in protecting the server as

passwords are stored (encoded) in the system registry.

If you have included the information needed for the ODBC driver to connect to your

database as either File DSN or SQLDriverConnect data, you should be able to use the

driver with no further steps.

Development for each desktop

Install the ODBC/32 client on each system where the application will be running by

executing odbcxxxc.exe from your CD or via the web.

If you are using DSNs to access the ODBC driver, create a User or System DSN. Use

question marks (?) in the DSN fields if needed. User interaction would be required to

complete the connection and no passwords would need to be stored in the system

registry.

If you have included the information needed for the ODBC driver to connect to your

database as either File DSN or SQLDriverConnect data, you should be able to use the

driver with no further steps.

Reporting tools

Install the ODBC/32 client on each system where the reporting tools will be used by

executing odbcxxxc.exe from your CD or via the web.

If you are using MSOffice‟97, you will need to create a File DSN. Most other products

can use any type of DSN including User and System.

Upgrading ODBC/32

Obtain the files to upgrade your ODBC/32 from our web or FTP site. Navigate to

 Page | 24

www.minisoft.com. Under Middleware select ODBC. Select ODBC Updates. Select the

updates that best fit your deployment.

 Page | 25

4. Client Configuration
ODBC data sources are generally configured through an ODBC Data Source

Administrator. This is part of the Windows operating system. For UNIX systems, you can

use the Data Source Administrator that is part of unixODBC or iODBC. Application

properties can also be used to configure data sources.

JDBC data sources are configured through either a URL or application properties. These

two options are available when using most off the shelf applications or writing your own

application.

An OLE DB Data Provider is configured through the application using it. Both the

OLE DB data provider and ODBC driver use a common set of Windows dialog boxes.

Configuring a data source

To configure a data source with Windows ODBC Data Source Administrator:

1. Select your PC‟s Start Menu and click Settings >Control Panel. In the

Control Panel dialog box, select ODBC Data Source.

2. The ODBC Data Source Administrator window appears as shown in

Figure 1. Select the User DSN tab if it has not already been selected, then

click the Add button.

 Page | 26

Figure 1

3. The Create New Data Source dialog box appears as shown in Figure 2.

Select HP3000 Data Access Driver if it has not already been selected. Click

the Finish button.

Figure 2

 Page | 27

4. Minisoft’s HP3000 Data Access ODBC Driver dialog box appears as shown

in Figure 3. The ODBC Driver dialog box collects together all the

information needed to configure ODBC/32 for a given application. You must

fill in the Data Source tab, Connection tab, at least one database reference,

schema reference or Self-describing file reference in order to create a Data

Source Name (DSN).

Figure 3

5. Under the Data Source tab, fill in the Data Source and Description fields.

This information will appear in the list of available ODBC sources in your

database application.

Note: This information is valid for this computer. Choose a name for the

Data Source that will help you remember it and find it later. Useful ideas are

the name of the main database you wish to access or the MPE group the files

resides in.

6. Click the Connection tab in the Minisoft‟s HP3000 Data Access ODBC

Driver window. The display changes to as shown in Figure 4.

 Page | 28

Figure 4

7. At the Server Name field, enter your HP e3000 Server Name or IP address.

For Server Port, use 30006.

8. Fill in the Login fields with the appropriate HP e3000 user information for

accessing your database (this information is required to verify your access

rights to the requested database). Use a session name (Security/3000 user

name) in the Job Name field to allow user identification.

9. Click the Security tab. The following screen appears as shown in Figure 5. If

you are using VESOFT‟s Security/3000, you should configure the session

user password on the Security tab.

 If you are using a rotating password, the password will always be the first

one entered when setting up the user. If a „?‟ is entered in the password field,

the user will be prompted at runtime for a password.

 A Catalog is another way to limit access to your data. Using the Catalog

Editor (see Chapter 7), individual or groups of users can have access

restricted down to the item level.

 The Catalog User is either the MPE/iX user and account or the Windows

logon name. If security is to be based on the Windows logon name then

„<WINUSER>‟ is entered in the user field, otherwise the field is left blank.

 Page | 29

 The catalog password field is reserved for future use. Leave this blank.

 If you do not use Security/3000 leave the Security/3000 field blank.

Figure 5

Using Schema Editor Files

Note: You must choose at least one Database reference, Schema reference or Self-

describing file reference. You may choose more than one or all three. If you define the

same database in both places for the same DSN, you will open the database twice. You

should NOT add the same name for both a Schema and Database reference.

1. If you have or intend to define a Schema file using the Schema Editor, click

the Schemas tab in the Minisoft‟s HP3000 Data Access ODBC Driver

window as shown in Figure 6.

 Page | 30

Figure 6

2. Click Add Schema to enter the name of your schema file. You must have a

Schema file to define the record layout for MPE and KSAM files.

3. The Add/Configure Schema will display as shown in Figure 7. Enter the fully

qualified MPE file name and Lockword (if needed) for the Schema file

created with the Schema Editor. Then click OK.

Figure 7

4. A Schema file maybe needed for a TurboImage database for redefining items

in a database such as: item name, length, type, extracting substrings, or date

format manipulation. See Chapter 6 Schema Editor for details on defining a

file using the Schema Editor.

Using database files

Note: You must choose at least one Database reference, Schema reference or Self-

 Page | 31

describing file reference. You may choose more than one or all three. If you define the

same database in both places for the same DSN, you will open the database twice. You

should NOT add the same name as both a Schema and Database reference.

1. If you intend to define a database, click the Databases tab in the

Minisoft‟s HP3000 Data Access ODBC Driver as shown in Figure 8.

Figure 8

2. Then click Add Database.

3. The Add/Configure Database window will appear as shown in Figure 9

4. Enter your fully qualified MPE Database Name and Password and select

the appropriate Type and Open mode as shown in Figure 9. Click the OK

button.

(If you are unaware of the database password, see Using DBUTIL to find

database passwords on page 148.)

Note: Passwords for your TurboImage database are case sensitive.

 Page | 32

Figure 9

Using Self-describing files

Note: You must choose at least one Database reference, Schema reference or Self-

describing file reference. You may choose more than one or all three. If you define the

same database in both places for the same DSN, you will open the database twice. You

should NOT add the same name as both a Schema and Database reference.

1. If you intend to define a Self-describing file, select the Self-describing files

tab from the Minisoft‟s HP3000 Data Access ODBC Driver. Then click Add

File as shown in Figure 10.

 Page | 33

Figure 10

2. The Add/Configure Self-describing File dialog box displays as shown in

Figure 11.

3. Enter your file name and password and select the appropriate options for

configuring your self-describing file.

Figure 11

Using Translation Tables with ODBC/32

For conversion between different character sets on the HP e3000 server and the PC client,

ODBC/32 uses character set translation tables. For more details on these settings and

files, see Translation Tables on page 43.

To configure the respective conversion:

1. Select the Language tab in the ODBC Driver Configuration window as shown in

Figure 12.

2. Enter the name of the existing .tbl translation table in the DSN configuration

dialog box.

3. After filling out needed information in Minisoft HP3000 Data Access ODBC

Driver dialog box, click OK. Open your database program and the ODBC data

source should now be available.

 Page | 34

Figure 12

Advanced Options

Figure 13

This tab (Figure 13) shows the advanced options available. The following table shows the

mapping to the Connection Properties defined on page 37.

 Page | 35

Lock retries – LockRetries

Century split year – CenturySplit

Disable HP3000 transactions – DisableTxns

Enable item-level locking – ItemLocking

Use standard SQL join processing – StandardJoins

Auto-commit ON is the default – AutoCommitDefault

All warnings are treated as errors – WarningsAreErrors

Max Cache – MaxCacheSize

Max Write – MaxWriteSize

BigInt as Char – BigIntAsChar

Trace Sys/Log Level – TraceSysLevel/ TraceLogLevel

Trace Flush Writes – TraceLogFlush

Trace Log File Name - TraceFileName

Creating a Standalone File DSN

Create a File DSN for users who will not need to learn the ODBC Administrator. The

information entered in a File DSN is the same general information that would be entered

when creating a User or System DSN in the ODBC/32 Administrator. You can specify

the same parameters in a FILE DSN (See Connection Properties on page 37).

Standalone File DSN Example

The following is an example of a File DSN that includes connection, database and table

information.

Note: All names are case sensitive.

[ODBC]

2DriverTable=

 Page | 36

2HostTable=CUSTOMERS

DecimalPoint=.

Description=Sample VB created DSN

Language=-1

Server=000.000.000.000

Server Port=30006

User=MGR

User Password=

Account=MINISOFT

Account Password=

Group=MM

Group Password=

Jobname=ODBC

Security Password=

Catalog User=

Catalog Password=

Schema0=TESTSCH.MM.MINISOFT,

ImageDatabase0=MSCARD.MM.MINISOFT,DO-ALL,N,5,0

SDFile0=TESTSUB,LOCKIT,2,3,0

LockRetries=1

DisableTxns=NO

ItemLocking=ENABLED

StandardJoins=YES

WarningsAreErrors=NO

AutoCommitDefault=ON

CenturySplit=50

SQLDriverConnect

SQLRETURN SQLDriverConnect(

SQLHDBC ConnectionHandle,

SQLHWND WindowHandle,

SQLCHAR * InConnectionString,

 Page | 37

SQLSMALLINT StringLength1,

SQLCHAR * OutConnectionString,

SQLSMALLINT BufferLength,

SQLSMALLINT * StringLength2Ptr,

SQLUSMALLINT DriverCompletion);

Where InConnectionString defined with properties separated with semicolons (See

Connection Properties on page 37).

“DRIVER=HP3000 Data Access Driver;

Database0=MSDB.DEMO.MINISOFT,WRITER,N,1;

Server=000.000.000.000;Server Port=30006;

Jobname=MSJOB;User=MGR;User Password=PASSWORD;Account=MINISOFT”

Connection Properties

This is a list of the common connection properties used by ODBC, JDBC, and OLE DB.

2DriverTable

String Value

This string defines the read Translation Table file. See Translation Tables on page 43.

2HostTable

String Value

This string defines the write Translation Table file. See Translation Tables on page 43.

Account

String Value (Server Type 0 only)

Enter the HP e3000 logon account.

Account Password

AccountPassword

String Value (Server Type 0 only)

 Page | 38

Enter the HP e3000 logon account password.

AutoCommitDefault

Enter ON or OFF.

Default state for the connection whether an INSERT, UPDATE or DELETE transaction

should be committed.

BigIntAsChar

Contact Minisoft support before changing this value.

Some applications cannot correctly handle very large values as numbers. With this flag

set, all columns that would normally be represented as SQL_BIGINT are converted to

character and seen as SQL_CHAR.

Catalog Password

CatalogPassword

Deprecated

Catalog User

CatalogUser

Enter the windows user or leave this parameter blank.

CenturySplit

Enter a year for windowing dates.

Used for conversion between 2digit years and 4digit years. 2digit years less than the

number will have 2000 added. 2digit years greater than or equal to the number will have

1900 added.

Database<n>

Deprecated – Use ImageDatabase<n>.

DecimalPoint

Insert a character for use with a decimal place.

 Page | 39

Description

This is an optional descriptive text string.

DisableTxns

String Value (YES or NO)

Default “NO”

The use of the MPE Transaction Manager (XM) may be disabled with the DisableTxns

registry entry. If set to No, ODBC/32 will use XM when executing UPDATES,

DELETES, and INSERTS. If set to Yes, ODBC/32 will not use XM when executing

UPDATES, DELETES, and INSERTS. This should only be used when an UPDATE,

DELETES, or INSERT statement causes the XM‟s log file to fill up.

Note: When DisableTxns is set to Yes, a rollback cannot be done if the statement

encounters an error or the system goes down. All records modified up to that point will

remain modified.

Domain

String Value (Server Type 2 only)

DSN

Data source name.

Group

String Value (Server Type 0 only)

Enter the HP e3000 logon group.

Group Password

GroupPassword

String Value (Server Type 0 only)

Enter the HP e3000 logon group password.

 Page | 40

IgnoreUIDPWD

This setting is used with calls from applications which pass the unnecessary user name

and password as API parameters.

ImageDatabase<n>

<database name>,<database password>,<load auto master flag Y/N>,<database open

mode>,<suppress TPI suffix>

ItemLocking

String Value (ENABLED or DISABLED), case insensitive

Default “ENABLED”

The DSN registry variable „ItemLocking‟ controls whether item-level locking will be

used. The default enables item level locking when possible. Any value other than

„ENABLED‟ will cause all locking to be done at the set level. This is necessary when

error -222 (Descriptor list exceeds 4094 bytes) is returned from TurboImage. This

typically happens when an INSERT, UPDATE, or DELETE statement is executed many

times, or many statements are executed within one transaction.

Examples:

ItemLocking=”ENABLED”

Enables item level locking.

ItemLocking=”DISABLED”

Forces set level locking.

If an UPDATE or DELETE (detail datasets only) statement has a where clause that

specifies an IMAGE key with an „=‟ relational operator or a BTREE key with „=‟, „<=‟,

or „>=‟ relational operators, the locking statement will be at the item level using the key

item and the associated value and relational operator. For INSERT statements on detail

datasets, the first item in the item list and its value will be used for the lock.

Jobname

String Value (Server Type 0 only)

 Page | 41

Enter the Job name.

Language

This value is used for sort order processing on the server. If left at default, the server is

queried for the appropriate language to use.

LockRetries

Enter a number or enter the default number 1.

Specify the number of times to retry a conditional lock. If set to 0, unconditional locking

will be used. The order locks are applied, are determined by the order of the SQL

statements in the transaction.

Note: Never use unconditional locking when locking multiple databases and/or files,

unless all applications apply the locks in the exact same order.

MaxCacheSize

Contact Minisoft support before changing this value.

This can affect the size of the read-ahead buffer used when sequentially fetching records.

MaxWriteSize

Contact Minisoft support before changing this value.

This will affect the size of the network buffers used in communicating with the host. It

may be changed if there are network latency or router difficulties.

Schema<n>

<schema file name>,<lockword>

SDFile<n>

<filename>,<lockword>,<type>,<foptions>,<aoptions>

 For value type: 0 = Query SD file

 1 = Robelle SD file

 2 = QUIZ Subfile

 Note: Refer to HP documentation for values for foptions and aoptions.

 Page | 42

Security Password

SecurityPassword

Enter your security 3000 password.

Server

Enter the server IP Address or Hostname.

Server Port

ServerPort

Enter the server port, default is 30006.

Server Type

ServerType

 0 = MPE

1 = UNIX (HPUX, Linux)

2 = Windows™

StandardJoins

Enter YES or NO.

StandardJoins=”YES”, cause inner joins to be done as the SQL standard requires. All

new DSNs will have this set to “YES”. If the setting does not exist or is anything other

than “YES” (case insensitive) the existing inner join logic will be used.

TraceFileName

Contact Minisoft support before changing this value.

See Tracing Facilities on page 141.

TraceLogFlush

Contact Minisoft support before changing this value.

See Tracing Facilities on page 141.

 Page | 43

TraceLogLevel

Contact Minisoft support before changing this value.

See Tracing Facilities on page 141.

TraceSysLevel

Contact Minisoft support before changing this value.

See Tracing Facilities on page 141.

User

user

UID

Enter the HP e3000 user logon.

User Password

UserPassword

password

PWD

Enter the HP e3000 user password.

WarningsAreErrors

Enter YES or NO.

Some clients use SQLSetStmtAttr to set the maximum size for a result set. If this size has

been exceeded an error message will be generated unless the registry entry

“WarningsAreErrors” for the data source is set to “NO”. Reaching the row limit set by

the client with SQLSetStmtAttr will no longer cause this error. Reaching the row limit set

in MSJOB with the MSQUERYRECLIMIT variable will still trigger the error as

intended.

Translation Tables

Translation tables provide a means to substitute characters during ASCII data transfers.

These tables are available from Minisoft, Inc. Contact Minisoft to receive the table(s) you

 Page | 44

need. You may also create you own tables.

To obtain proper conversion of data from the MPE server system to your Windows based

software on the PC client, install the tables as directed on your system(s). From the table

shown in Table 1, select the conversion table that corresponds to your environment.

Server Character Set Client Character Set Host->Driver Driver->Host

ROMAN8 Windows ANSI ROM8ANSI.TBL ANSIROM8.TBL

LATIN2 Windows ANSI LAT2ANSI.TBL ANSILAT2.TBL

ISO 7bit DANISH/NORWEGIAN Windows ANSI DAN7ANSI.TBL ANSIDAN7.TBL

ISO 7bit FINNISH/SWEDISH Windows ANSI FIN7ANSI.TBL ANSIFIN7.TBL

Table 1

Note: The above files are the same as those used with other communication products.

Making XLAT Files

The size of these tables is always 256 bytes. The characters in this file are substituted for

the equivalent (indexed) character requested. If the file contains the sequential binary

values zero through 255, no change would effectively take place.

Example:

If the 33rd character (Decimal value 32, Hex 20) is replaced with the 66th character

(Decimal value 65, Hex 41), all blank spaces will be replaced with the letter A.

 Page | 45

5. Server Configuration

Common Options

How options are configured

You may configure the servers either through startup parameters or environment

variables.

Startup Parameters

Startup parameters are characters or combinations of characters included on the

command line or in a startup parameter field. While the format of these parameters is

common for all servers, operating system specific details may vary.

 S – Secure Logon

 W - Write

 R – Row ID

 U - Allow CIUPDATE

 H – Host Commands

 C – Catalog Security

 F – Full Read

 T – Tracing

 P – Port Number

 N – Native Library

 V – Version Information

 E – Environment File

Configuring for Secure Logon access (S)

The servers are shipped with the “S” parameter in place. This option prevents access

should the logon information be invalid. Do not remove this option without

understanding that access will be granted to your data based upon the default user for the

 Page | 46

connection.

Configuring for Write access (W)

As shipped, the server will allow read-only access to databases and files. If you wish to

permit writes and updates to files and databases, you must first modify the startup

parameters to include the letter “W”.

For example:

SETVAR MSSERVER000004 “30006 0 ODBCSRVR.MM.MINISOFT S”

Becomes:

SETVAR MSSERVER000004 “30006 0 ODBCSRVR.MM.MINISOFT S W”

Configuring for ROWID (R)

This adds a virtual column of integers representing the current row number of the row in

the image database. This is a read only value. The value returned may be changed by

other applications that access the database at any time. Do not reply on this value to

persist.

Configuring for CIUPDATE (U)

When set, all DBOPEN are followed by a DBCONTROL to enable Critical Item Update

(CIUPDATE). This will succeed for databases that are configured to “allow”

CIUPDATE.

Configuring for Host Commands (H)

Configuring for Catalog Security (C)

In order to use the extra security checking of a catalog file, the „C‟ parameter must be

added to the startup parameters.

A catalog file must then be created with the Catalog Editor and uploaded to the server.

By default the server program looks for a file named ODBCCAT in the login group of the

user. You can use multiple Catalog files if users are logging into different groups.

Optionally, on MPE systems a file equation may be placed in MSJOB before the run line,

 Page | 47

to specify a single catalog file for all users.

Configuring for Full Read (F)

Enabling FullRead, by placing an “F” in the startup parameters, prevents the server from

optimizing certain select SQL statements. Many client applications will issue “select *

from table” statements with a series of sequential fetches. The servers can optimize this

type of statement without affecting the outcome of the result set. Please contact Minisoft

support if you feel this optimization should be disabled on your system.

Configuring for Tracing (T)

For more details, review “Tracing Facilities” on page 141.

Port Number (P)

Native Library (N)

When this is set, the native eloqdb library is used in place of the Image3k library.

NATIVE_ELOQ is a synonym for the „N‟ startup parameter.

Version Information (V)

Environment File (E)

Environment Variables

These values are used for more complex or universally applied configurations. On MPE

systems they are set with the SETVAR command in the job or session which holds the

listener process. UNIX and Windows servers read the shell variables. UNIX and

Windows servers may also reference a port specific file of environment variables for

added flexibility.

 MSQUERYRECLIMIT

 MSQUERYCPULIMIT

 Page | 48

 MSQUERYCHECKINTERVAL

 MSDECADEDIGITS

 MSTRACESTATEMENT

 TraceSysLevel

 TraceLogLevel

 TraceLogFlush

 TraceFileName

 ROBELLE_SD_TYPE

 NATIVE_ELOQ

MSQUERYRECLIMIT

MSQUERYCPULIMIT

These variables are used to limit queries If you need to limit the time or disc space

affected by ODBC, add one or both of the following statements to your MSJOB file

(before the RUN command):

!SETVAR MSQUERYRECLIMIT 1024

!SETVAR MSQUERYCPULIMIT 20

Maximum records per query set with MSQUERYRECLIMIT is in records <records>.

Maximum cpu time per query set with MSQUERYCPULIMIT is in seconds <seconds>.

If either limit is reached, your action will be terminated with an error.

MSQUERYCHECKINTERVAL

This will set the minimum time in seconds between network client checks. Used during

sort and select operations to verify the client is still attached. The default is 60 seconds.

MSDECADEDIGITS

Text array used to handle those server applications that choose to use „A0‟ to represent

the year 2000.

MSTRACESTATEMENT

Setting this will write the SQL statement being processed by the client to the current log

file regardless of the TraceLogLevel.

 Page | 49

TraceSysLevel

TraceLogLevel

TraceLogFlush

TraceFileName

ROBELLE_SD_TYPE

NATIVE_ELOQ

When this is set, the native eloqdb library is used in place of the Image3k library.

NATIVE_ELOQ is a synonym for the „N‟ startup parameter.

MPE Specific

Modifying SETVAR statements

Modify MSJOB by changing the lines as follows:

SETVAR MSSERVER000004 “30006 0 ODBCSRVR.MM.MINISOFT S”

To enable write / update access, modify the command line to include the “w” (write)

option:

SETVAR MSSERVER000004 “30006 0 ODBCSRVR.MM.MINISOFT S W”

You can now stream MSJOB.MM.MINISOFT, the listener on the HP e3000.

Using Indirect files

Some customers use indirect file references to configure the servers. If you see lines that

appear as follows in your MSJOB file, you will need to modify the referenced file.

SETVAR MSSERVER000004 “^ODBC0001”

In the case shown above, the indirect file is ODBC0001 in the current group.account for

the current job. Changing the write access requires changing the line

30006 0 ODBCSRVR.EXE.MINISOFT;STDLIST=*LP;PRI=CS S

 Page | 50

to

30006 0 ODBCSRVR.EXE.MINISOFT;STDLIST=*LP;PRI=CS S W

UNIX Specific

inetd

 Page | 51

6. Schema Editor

Introduction

The Schema Editor is used to create and edit “schemas”. Schema files are saved in .XML

format on the local PC and then uploaded to the HP e3000 for use by the end user.

Schema files contain descriptions of a variety of files: TurboImage databases (derived

from the databases themselves), KSAM files, MPE files, Cognos PDL files; and self-

describing files generated by such programs as HP Query, Robelle SUPRTOOL and

Powerhouse subfiles. Schemas can be included in a datasource on the Schema tab of the

Data Source Configuration dialog box of the ODBC/32 Driver. Schemas can consist of a

single TurboImage database or multiple KSAM, MPE, or self-describing files.

Note: Do not confuse schemas created and edited in Minisoft‟s Schema Editor with the

schema files created with a text editor on the HP e3000 and used by

DBSCHEMA.PUB.SYS to create the TurboImage root file. While both schema files

contain similar information, they are quite different in practice.

KSAM and MPE files must be described with the Schema Editor to be accessible through

ODBC/32. TurboImage databases may be redefined with the Schema Editor to change

the way they are presented through ODBC/32. Commonly, you may need to redefine a

character or numeric type as SQL_DATE. TurboImage item names with any special

character other than the hyphen (-) must be given an alias name to be accessed.

Adding a new item requires you to use the Schema Editor. Some items are composed of a

number of sub-elements. By adding an item, you can access any portion of the Record

Buffer as any data type.

The Schema Editor is executed by clicking Schema Editor in the Minisoft program group.

Its main screen is shown in Figure 14:

 Page | 52

Figure 14

Schema Editor Menu Bar Definitions

File Menu

New -Allows you to create either a blank schema used for KSAM, MPE, or self-

describing files or to import the database layout from a TurboImage

database. If you choose the later you will be prompted to enter the Database

name, Password, and open Mode. Normally the „Load Automatic Masters‟

checkbox is not selected. Remember the database password is case sensitive.

Open - Allows you to open an existing schema file already saved on your PC.

Schema files are saved in .xml format and by default have an .xml suffix.

Open Remote - Allows you to open a schema file saved on your HP e3000. You

are prompted for the name of the schema file and the group and account, and

the lockword if there is one.

Import PDL File - This option allows you to import a Powerhouse data diction-

ary source file. The source file can either reside on the HP e3000 or as a

local file on your PC. If it is on the HP e3000, enter the name of the PDL file

in the Dictionary field, the group and account, and lockword if there is one.

If the file has been downloaded to your PC, check the „Use local file‟ box

then enter the full path name into the Dictionary field. Processing is faster

with a local file but not significantly so.

 Page | 53

Connection Menu

Load - Allows you to open a saved configuration file.

Save - Allows you to save a connection configuration file.

Edit - Allows you to edit a connection configuration file.

Connection to your HP e3000

The Schema Editor stores its “schemas” as .XML files on your local PC and optionally

on the HP e3000. Upload your schemas to the HP e3000 before using.

The Schema Editor needs connection configuration information to make connections to

the HP e3000. To add the connection configuration information select Connection - Edit

from the main menu in the Schema Editor. The Connection Configuration dialog box

displays as shown in Figure 15.

Figure 15

1. Enter your HP e3000‟s IP address or host name in the Server Name field.

2. The Server Port field default value is 30006 and is typically never changed.

3. Enter valid login information in the following fields.

 Page | 54

4. Optionally, click the „Load‟ button to load a saved configuration file.

5. When finished press OK, and select Connection > Save from the Schema

Editors main menu to save the connection configuration for later use.

Note: You can automatically load this connection configuration when the Schema Editor

starts by including the file name of the connection configuration on the command line for

the Schema Editor icon.

Opening a Schema Editor file

File > Open

This menu option allows you to open an existing schema file saved on your PC. Schema

files are saved in .xml format and by default have an .xml suffix. Select File > Open. The

Open Schema dialog box appears as shown in Figure 16.

Figure 16

 Page | 55

File > Open Remote

With MPE systems, you are prompted for the name of the schema file and the group and

account, and the lockword if there is one. See Figure 17. For UNIX and Windows based

systems, you will enter the path and file name where the Schema Editor file is located.

See Figure 18.

Figure 17

Figure 18

Saving a schema

3. From the file menu select Save or Save As to save your schema to your PC.

4. To save and then upload your schema file to the HP e3000, select File >

Save and Upload. When selected, the Save Schema dialog box appears as shown

in Figure 5-15.

 Page | 56

5. Name the file to store the Schema in by filling in the Schema and Group and

Account fields. Note: You must be logged into the account specified and have

write and save access to the group and account in order to save the Schema file to

the HP e3000.

Schema - Name of the schema file. Only valid HP e3000 names are allowed.

Group and Account - The group and account to save the schema file. For fewer

problems, try to save the schema file in the account where data resides.

Lockword - Optional. Enter a lockword to prevent unauthorized access to the

schema file.

Creating a Schema for KSAM and MPE files

To create a new schema, select File > New. The New Schema dialog box appears as

shown in Figure 5-3.

1. Select one of two choices when creating a New Schema:

 Create blank schema

2. In the Schema name field, enter the name of the file on the HP e3000 that the

schema will be stored in. Do not include the group and account.

 Page | 57

3. Once you press OK, the schema appears in the main window as shown in

Figure 5-4:

Creating a table

To create and add table definitions to your schema, select Tables > Add from the main

menu.

To view and edit table properties, select View > Properties from the main menu. The

“File Table Properties” dialog box will then be shown, see Figure 5-5 and Figure 5-6:

 The Definition tab shows table name, alias, and type. For KSAM and MPE files

all the above fields can be modified. The alias name, if entered, is the name that

 Page | 58

will be presented through the ODBC/32 driver:

 The File Open Info tab contains the open information for the file. All the

following fields maybe changed:

Note: The Table Properties dialog box is modeless, so it will remain on display until you

explicitly close it with the close button.

Creating a schema for a TurboImage database

To create a new schema:

1. Select the File - New menu.

2. The New Schema dialog box appears as shown in Figure 19.

3. Select Create Schema From TurboImage Database and enter the database

name and password. Then click OK.

 Page | 59

Figure 19

4. The Connection Configuration dialog box appear as shown in Figure 5-2.

Complete the dialog as explained under the heading Connection to your HP

e3000 and press OK.

 5. A new schema will be initialized with a description of the database as shown

in Figure 5-12.

 Page | 60

Figure 20

Database Dataset Properties

The Definition tab shows the Table Name, Alias, Dataset Type, and Lock Item for the

Image table. The Alias name, if entered, will be the name presented through the

ODBC/32 driver. If a Lock Item is selected, it will be used as the default lock item when

doing Item Level Locking but only if it is part of the WHERE clause.

The Database Open Info tab contains the Name of the database to open, the database

password (which is case sensitive), and the database Open Mode. The most common

 Page | 61

Open modes are Mode 1 for write access and Mode 5 for read only access.

Note: The Image Table Properties dialog box is modeless so it will remain on display

until you explicitly close it. Saving the Schema file saves all changes that have been

made.

Creating a schema for Self-describing files

To reference a DSN:

1. Start the Schema Editor and create a new blank schema.

2. From the menu bar select Table > Import self-describing file to import and

modify the definition. (see Figure 5-13)

 Page | 62

Figure 5-13

3. The dialog for self-describing files appears (Figure 5-14), allowing you to

specify the type of file and how it should be opened.

Figure 5-14

Adding and editing items

Note: Item Names for Record Based or Calculated items are Image syntax. Names with

hyphens must be entered with hyphens as they will appear as underscores in your client

 Page | 63

application.

The expression of Calculated items are in SQL syntax. Names of the existing items must

be entered in converted form where hyphens become underscores.

Record based

To add items to a table, select the table from the Schema Editor and select Item>Add

from the main menu. The Item Properties dialog box will then appear as shown in Figure

5-7. Use the following dialog box to view and edit the item properties:

Figure 5-7

Definition tab:

Item Name and Alias fields: Name of the record item.

Offset, Data Type and Length fields: Describes type, size, and item location in the

record. Data Type and Length must be valid TurboImage type and length

specifications. The size may specify storage that is not an even number of

bytes.

 Note: The byte size of the item depends on the Data Type and Length

according to the rules for TurboImage data items.

SQL Type field: Specifies the data type that is presented through the ODBC/32

driver. See Chapter 5 Data conversion for further information on using this

field.

Precision field: Specifies the total number of digits contained in a fixed numeric

data item. Fixed numeric data items have SQL types of SQL_SMALLINT,

 Page | 64

SQL_INTEGER, SQL_BIGINT, SQL_NUMERIC, and SQL_PACKED.

Scale field: Specifies how to scale numeric data items of SQL_NUMERIC and

SQL_PACKED types. The number represents how many places the decimal

point is moved to the left.

Keep in mind that the Item Properties dialog box is modeless, so it will remain displayed

until you explicitly close it, using the close button.

Adding and editing keys (indexes) - KSAM only

To add indexes to a table:

1. Select the table from the main window, and select Indexes > Add from the

main menu.

2. Use the View > Index Properties menu to view and edit the index properties.

Index properties are contained on two tabs on the Index Properties dialog

box, as shown in Figure 5-9 and Figure 5-10:

 The Definition tab names the index and specifies a type:

Figure 5-9

 The Components tab specifies which data items are available to be

indexed. Select a data item from the Available Items listbox and click the Add

button to add it to the Component Items listbox:

 Page | 65

Figure 5-10

Adding calculated items

To create a calculated item:

1. Select Add Calculated Item from the Items menu.

2. Highlight the new item you created and select the Properties option from the

View menu. The calculated Item Properties dialog box then appears, as

shown in Figure 5-8.

3. Enter an appropriate name in the Item Name field.

4. Next, define your item with a valid SQL expression. For example:

 To create a NEW calculated item called TOTAL-DUE that would be the

difference of items TOTAL-OWED and TOTAL-PAID, the expression

would be “TOTAL_OWED -TOTAL_PAID”.

 Note: Do not use any special characters in the name of the calculated item.

The expression must contain valid SQL expressions.

 Page | 66

Figure 5-8

SQL Examples

Note: For lists of supported functions see Appendix D on ODBC/SQL Functions.

Below are function examples using valid SQL expressions as follows:

 Enter valid SQL functions:

 {fn CONCAT(CUSTOMER_NUMBER, CUSTOMER_NAME)}

 The following function concatenates a name:

 ({fn rtrim(name_first)} + „ „ + name_last)

 An 8 character field in the format of yyyymmdd is put into a date format using

the substring function:

 ({fn substring(date_opened,5,2)} + „/‟ +

 {fn substring(date_opened,7,2)} + „/‟ +

 {fn substring(date_opened,1,4)})

 In the following three examples, the field address4 has data stored in the format

of „City Name, WA 98275‟.

 To return the city:

 {fn substring(address4, 1, ({fn locate(„,‟, address4)} - 1))}

 To return the state:

 {fn substring(address4, ({fn locate(„,‟, address4)} + 2), 2)}

 To return the zip code:

 {fn substring(address4, ({fn locate(„,‟, address4)} + 5),

 Page | 67

 ({fn char_length(problem_desc)} - ({fn locate(„,‟,

problem_desc)} + 5)))}

 Note: The zip code starting point is determined by locating the „,‟ then adding 5.

How many characters that are returned is determined by subtracting the starting

point from the total length of the field.

MPE Data Types

Use the Image Data Type and Length when defining the type used in Image, KSAM, or

MPE fields. This reference chart can be used to determine the appropriate type from your

existing source code. The bytes reference will guide you in determining the width of each

item so that the offset for the nextiem can be found.

Using Dates

When changing the SQL type of a data item from its default to SQL_DATE, the

conversion options will be masked based, value based, or both depending on the original

Image Data Type.

Note: Your original Image Data Type will not be changed.

1. Select an Item to change its default SQL Type to SQL_DATE.

2. From the Record-based Item Properties dialog box change the SQL type to

SQL_DATE as shown in Figure 5-18.

 Page | 68

Figure 5-18.

 Note: If you do not change the SQL type to SQL_DATE, the Date

Conversion tab options will not be available.

3. After selecting SQL_DATE from the SQL type drop down list, click the Date

Conversion tab as shown in Figure 5-19.

4. Depending on the original Image Type, you will see the options value-based,

mask-based, or both in the Internal type field.

 For value-based type, select an appropriate value format from the options

listed, as shown in Figure 5-19.

Figure 5-19

5. For mask-based Internal types, enter year (Y), month (M), and day (D) in the

appropriate column. For character Image types, you have the option to add

 Page | 69

separators such as /, -, etc. for placeholders, as shown in Figure 5-20. This

becomes very important if you are updating or adding records.

Figure 5-20

6. Integer Image Types have the option of being mask-based or value-based. If

you choose mask-based, assign a year (Y), month (M), and day (D) to the

appropriate bits as shown in Figure 5-22. If value-based, select the

appropriate value format from the options listed.

Figure 5-22

ManMan Dates

ManMan dates can be used by selecting the appropriate field and setting the Internal type

to Value-based, Value-format to Days since start date, and Starting date to 10/30/71 (See

Figure 5-23).

 Page | 70

Figure 5-23

Data conversion

To change the way a client application sees a data item, change the SQL Type field in the

Item Properties dialog box.

A common situation in a database or file is items of type such as J, I, or Z representing

money amounts in cents. Typically client applications see an item of this type as an

Integer or Long Integer, but the user would like to use it as a number with two decimal

places. To change the way a client application sees a data item, change the SQL Type

field in the Item Properties dialog box by specifying an SQL type of SQL_NUMERIC

and a scale of 2 (as shown in Figure 5-17). The client application will then see the item as

a dollar amount.

Figure 5-17

 Page | 71

Importing PowerHouse Definition Language

Minisoft has added support to the Schema Editor to read existing PowerHouse®

Dictionary Files. The Schema Editor will allow you to create new or modify existing

Schema Editor Files based upon the definitions of the tables and items. To do this:

1. Optionally, open an existing Schema to be modified. You can add File and

KSAM file definitions from your PDL file to an existing Schema Editor file.

2. Select Import PDL File from the File menu, as shown in figure 5-21.

Figure 5-21

3. In Figure 5-22 enter the PDL file name. The file name should be the text

source file for the PowerHouse Dictionary. Do not enter the name of the

compiled (binary) file.

Figure 5-22

 Page | 72

4. Enter connection information as shown in Figure 5-22.

Figure 5-22

5. Review each Database/MPE/KSAM file. Select either <new schema> file or

an existing (open) Schema Editor file.

(See Figure 5-23)

Figure 5-23

Using QSHOW to generate a new PDL file

The documented file equation for QSHOW is:

FILE QSHOGEN;REC=-1276,1,V,ASCII;DISC=50000

Change to:

 Page | 73

FILE QSHOGEN;REC=-80,,F,ASCII;DISC=50000

 Page | 74

7. Catalog Editor

Introduction to the Catalog Editor

The Catalog Editor is a Windows-based program used to create and maintain a catalog. It

is installed with the Administrator Setup program (Admin.exe).

Data security is controlled by the Catalog User name. There are two options for the

Catalog User name. The first is to have it based on the MPE/iX user and account, for

example MGR.MINISOFT. The user and account are obtained from the Connection tab

of the User/System DSN or the ConnectionString information if using a DNS-less

connection. The Catalog User name can be wildcarded thus @.MINISOFT, MGR.@ and

M@.MINISOFT are all valid Catalog User names.

The second option uses the Windows logon name. To use this option a value of

„<WINUSER>‟ needs to be entered into the Catalog User field on the Security tab when

setting up the DSN.

Note: The catalog file is stored as an ASCII file on the HP e3000. You must always use

the “Catalog Editor” application to modify this file. Modifications with other tools could

result in unpredictable behavior.

The Catalog Editor represents the catalog file in a graphical manner. The Users listbox as

shown in Figure 7-1, contains a list of MPE/iX and Catalog user names. Groups of users

can be created in the Groups window. Groups represent one or more users. The rightmost

window contains the security list. It lists schemas (or databases), tables, and columns,

along with lists of users and/or groups for various types of access.

 Page | 75

Figure 7-1

Note: It is not necessary to have any users in the Users window. These names are not

checked by ODBC/32, but are used to drag and drop in the Groups window and the

Security List window. It is also not necessary to have any groups in the Groups window.

Groups, however, are very useful for creating categories of users and minimizing the

changes needed when ODBC/32 users are added or deleted. The term user also refers to a

group that the user is a member of. The Security list is checked by ODBC/32 when a

client application wants to access data. The user must be in one of the data identifier‟s

access list for the user to have any type of access to the data.

Schemas/Databases only have one access list named Access. Access lists the names of the

users that have access to the named schema (Figure 7-2).

 Page | 76

Figure 7-2

Tables have four access lists described as follows (See Figure 7-3):

 Select: Users in this list may read records from the table.

 Insert: Users in this list may add records to the table.

 Update: Users in this list may update records in the table. This access also

implies Select access.

 Delete: Users in this list may delete records from the table.

 Page | 77

Figure 7-3

Columns have three access lists, described as follows (See Figure 7-4):

 Select: Users in this list may read the column.

 Insert: Users in this list may provide a value for this column for new records.

 Update: Users in this list may update the values of this column. This access

also implies Select access.

 Page | 78

Figure 7-4

It is important to note that a user must be in the appropriate access list of any data

identifier it wishes to access. Being in an access list for one data identifier never implies

access to another data identifier. For example, to read data in a column, the user must at

least be in the Select list of the column, the Select list of the table the column resides in,

and the Access list of the schema the table resides in.

Catalog Editor user interface

File menu

New: Creates a new catalog file.

Open: Opens an existing catalog file.

Close: Closes the catalog file and its window.

 Page | 79

Save: Saves the catalog to a file.

Save As: Saves the catalog to a different file name.

Save and Upload: Saves the catalog to a file, and then uploads it to the server.

Recent files: Opens the selected catalog file.

Exit: Exits the Catalog Editor.

Edit menu

Add User(s): Adds users to the Users window. This can also be accomplished with the

Add button in the Users window.

Remove User(s): Removes the selected user(s) from the Users window. This can also be

accomplished with the Remove button in the Users window.

Add User(s) to Group: Adds user(s) to the selected group in the Groups window. This

can also be accomplished with the Add Users button in the Groups window.

Add Group(s): Adds group(s) to the Groups window. This can also be accomplished with

the Add Groups button in the Groups Window.

Remove Group: Removes the selected group or users from the Groups window. This can

also be accomplished with the Remove button in the Groups window.

Add Schema(s) to security list: Adds empty schema(s) to the security list.

Add Table(s) to security list: Adds empty table(s) to the security list.

Add Column(s) to security list: Adds empty column(s) to the security list.

Add User(s) to security list: Adds user(s) and/or group(s) to the selected item in the

security list. This can also be accomplished by dragging and dropping a user, users, or

group on an item in the security list. If the selected item in the security list is a schema,

table, or column, a dialog will prompt for a subordinate access list to add the users to. If

the selected item in the security list is a schema or table and it is compressed (shown

preceded with a „+‟), then the users are added to the selected item access list and all of its

subordinate items access lists.

Remove selection from security list: Removes the selected item from the security list.

 Page | 80

View menu

ToolBar: Controls the display of the toolbar.

Status Bar: Controls the display of the status bar.

Users: Controls the display of the Users window.

Groups: Controls the display of the Groups window.

Expand all: Expands all the items in the security list.

Settings menu

Recursive Add Types: Controls which access lists are added when adding users to a

schema, table, or column in the security list.

Prompt when adding: Controls whether a prompt dialog for the access list is displayed

when adding to a schema, table, or column in the security list.

 Import menu

From Database: Imports the data-identifier names from the root file of a TurboImage

database.

From Schema file: Imports the data-identifier names from a Schema Editor file.

From Self-describing file: Imports the data identifier names from Query Self-describing

files, Robelle Self-describing files and Quiz subfiles.

Connection menu

Load: Loads the connection configuration from a file.

Save: Saves the connection configuration to a file.

Edit: Edits the connection configuration.

Catalog Editor command line options

<catalog file> : File to open when the Catalog Editor is started.

/C<configuration file> : File to load the connection configuration when the Catalog

Editor is started.

 Page | 81

Note: There are no spaces between the „/C‟ and the configuration file name.

 Page | 82

8. Using ODBC/32

MS Access

1. Start Access and click Blank Database to create a new blank database, as

shown in Figure 8-1:

Figure 8-1

2. From the File New Database dialog box (Figure 8-2), enter a name for your

database and select Create:

 Page | 83

Figure 8-2

3. Under the Tables tab select New as shown in Figure 8-3:

Figure 8-3

4. In the New Table dialog box (Figure 8-4), select Link Table and click OK:

Figure 8-4

 Page | 84

5. The Link dialog box will appear as shown in Figure 8-5. Pull down the Files

of Type list box and select ODBC Databases():

Figure 8-5

6. Once you select ODBC Databases() the Select Data Source dialog box

appears (Figure 8-6), switch to the Machine Data Source tab. Select the Data

Source Name previously created in the ODBC Administrator, then press OK:

 Page | 85

Figure 8-6

7. In the Link Tables dialog box (Figure 8-7) you now have the option of which

Image datasets to include in this link. After you have chosen the necessary

datasets press OK:

Figure 8-7

8. If you see the Select Unique Record Identifier dialog box (Figure 8-8), press

Cancel (selecting a field would cause delays in your queries):

 Page | 86

Figure 8-8

9. Your Database - Tables display should now include the datasets you selected

earlier (Figure 8-9):

Figure 8-9

10. Now create your queries and reports that use the data currently stored in your

Image Database.

 Note: If you select Open or double click on the dataset listed in the Tables

display, MS Access will attempt to copy all of the data from the dataset to

your PC. The intermediate file size is currently limited and may not store all

the dataset. If you receive a warning about the temp file size, please use a

query to select a subset of your data.

 Page | 87

Using MSAccess to change or add data with Minisoft’s 32-bit ODBC driver

Using MSAccess

1. Create an updateable DSN in the 32bit ODBC Administrator as explained in

Chapter 3.

2. Use an Open Mode that allows modification of the database.

3. Use a Password that grants write access.

4. Follow the instructions to create links in MSAccess.

When you see the Select Unique Record Identifier dialog box, you MUST select a field or

combination of fields that contain data that makes each record unique in the dataset.

You can now update, add, or delete information in your Image Database.

Notes:

1. If you select Open or double click on the dataset listed in the Table,

MSAccess will attempt to copy all data from the dataset to your PC. The

intermediate file size is currently limited and may not store all datasets. If

you receive a warning about the temp file size, please use a query to select a

subset of your data.

2. Your changes in datasheet mode take effect when you leave the current

record or when you Save Record (shift + enter).

3. MSAccess allows one level of Undo.

Using MSAccess to insert an address from an Image database with ODBC/32

The following is an example of using Minisoft‟s ODBC/32 driver to insert an address

from an Image database:

Sub InsertAddress()

ActiveDocument.Save

Dim CustomerNr, SQLString, SQLString1

CustomerNr = InputBox(“Enter Customer Number”, “Insert Address”)

If CustomerNr <> “” Then

 Page | 88

Set AdrDoc = Documents.Add

SQLString = “SELECT CUSTOMERS.CUSTOMER_NAME, “&_

”CUSTOMERS.ADDRESS1, CUSTOMERS.ADDRESS2,” & _

”CUSTOMERS.CITY, CUSTOMERS.STATE, CUSTOMERS.COUNTRY “

SQLString1 = “FROM TESTSAV3.CUSTOMERS CUSTOMERS “&_

“WHERE (CUSTOMERS.CUSTOMER_NUMBER=‟” & CustomerNr & “„)”

AdrDoc.Range.InsertDatabase Format:=0, Style:=0, _

LinkToSource:=False, _

Connection:=”DSN=MSDB”, _

SQLStatement:=SQLString, SQLStatement1:=SQLString1, _

PasswordDocument:=””, PasswordTemplate:=””, _

WritePasswordDocument:=””, WritePasswordTemplate:=””, _

DataSource:=””, From:=-1, To:=-1, _

IncludeFields:=False

Set Table1 = AdrDoc.Tables(1)

ReDim TabCells(Table1.Range.Cells.Count)

i = 1

For Each TabCell In Table1.Range.Cells

Set CellRange = TabCell.Range

CellRange.MoveEnd Unit:=wdCharacter, Count:=-1

TabCells(i) = CellRange.Text

i = i + 1

Next TabCell

AdrDoc.Close (wdDoNotSaveChanges)

Insert CUSTOMER_NAME

Selection.TypeParagraph

Selection.MoveUp Unit:=wdLine, Count:=1

Selection.Range.InsertBefore TabCells(1)

Selection.MoveDown Unit:=wdLine, Count:=1

Insert ADDRESS1

Selection.TypeParagraph

Selection.MoveUp Unit:=wdLine, Count:=1

Selection.Range.InsertBefore TabCells(2)

Selection.MoveDown Unit:=wdLine, Count:=1

 Page | 89

Insert ADDRESS2

If TabCells(3) <> “” Then

Selection.TypeParagraph

Selection.MoveUp Unit:=wdLine, Count:=1

Selection.Range.InsertBefore TabCells(3)

Selection.MoveDown Unit:=wdLine, Count:=1

End If

Insert CITY

Selection.TypeParagraph

Selection.MoveUp Unit:=wdLine, Count:=1

Selection.Range.InsertBefore TabCells(4)

Selection.MoveDown Unit:=wdLine, Count:=1

Insert STATE

Selection.TypeParagraph

Selection.MoveUp Unit:=wdLine, Count:=1

Selection.Range.InsertBefore TabCells(5)

Selection.MoveDown Unit:=wdLine, Count:=1

Insert COUNTRY

Selection.TypeParagraph

Selection.MoveUp Unit:=wdLine, Count:=1

Selection.Range.InsertBefore TabCells(6)

Selection.MoveDown Unit:=wdLine, Count:=1

End If

End Sub

Sample Visual Basic Applications Source Code

The following sample was created and used in Microsoft Access

Option Compare Database

Option Explicit

Dim Db As Database

Dim Cust As Recordset

Sub LoadFields()

On Error GoTo Err_LoadFields

 Page | 90

Text1.Value = “”

Text2.Value = “”

Text3.Value = “”

Text4.Value = “”

Text1.Value = Cust(0).Value

Text2.Value = Cust(1).Value

Text3.Value = Cust(“LAST_NAME”).Value

Text4.Value = Cust(“FIRST_NAME”).Value

Exit_LoadFields:

Exit Sub

Err_LoadFields:

If Err.Number = 3021 Then

Cust.MoveFirst

Resume

End If

MsgBox Err.Description

MsgBox Err.Number

Resume Exit_LoadFields

End Sub

Private Sub Form_Open(Cancel As Integer)

Dim Connect As String

Dim SQL As String

On Error GoTo Err_Form_Open

Connect$ = “ODBC;DSN=MSDB;”

Set Db = OpenDatabase(“”, dbDriverNoPrompt, True, Connect$)

SQL = “SELECT * FROM CONTACTS “

Set Cust = Db.OpenRecordset(SQL, dbOpenDynaset)

Cust.MoveFirst

LoadFields

Exit Sub

Err_Form_Open:

MsgBox Err.Description, vbCritical

 Page | 91

End

End Sub

Private Sub Command1_Click()

On Error GoTo Err_Command1_Click

Cust.MoveNext

If Cust.EOF Then

MsgBox “EOF”

End If

LoadFields

Exit_Command1_Click:

Exit Sub

Err_Command1_Click:

MsgBox Err.Description

Resume Exit_Command1_Click

End Sub

Private Sub Command2_Click()

On Error GoTo Err_Command2_Click

Cust.MovePrevious

If Cust.BOF Then

MsgBox “BOF”

End If

LoadFields

Exit_Command2_Click:

Exit Sub

Err_Command2_Click:

MsgBox Err.Description

Resume Exit_Command2_Click

End Sub

Private Sub Command3_Click()

 Page | 92

Dim SQL As String

On Error GoTo Err_Command3_Click

If (Len(Text2.Value) < 1) Then

SQL = “SELECT * FROM CONTACTS”

Else

SQL = “SELECT * FROM CONTACTS WHERE CONTACT_NUMBER = „“ & _

Format(Text2.Value, “000000”) & “„“

End If

Set Cust = Db.OpenRecordset(SQL, dbOpenDynaset)

MsgBox Cust.RecordCount

LoadFields

Exit_Command3_Click:

Exit Sub

Err_Command3_Click:

MsgBox Err.Description

Resume Exit_Command3_Click

End Sub

Using SQL Server

The NT environment and SQL Server 7 offer a powerful set of tools for developing new

client/server and Web based applications. Most new applications, however, are not

completely isolated from existing applications. They must use and generate data that is

compatible with existing applications, which in some cases resides on an HP e3000.

SQL Server Linked Servers

SQL Server has support for linked servers. Link servers represent connections to other

databases. The databases can be non-SQL Server databases and can reside on any server

reachable through the network. The connection is accomplished through an OLE DB

provider. An OLE DB provider is a DLL that provides access to data from the supported

database in a common way.

 Page | 93

There are OLE DB providers for a number of databases, including Oracle and JET. The

most interesting OLE DB provider, however, is the one for access to data through ODBC.

Using this OLE DB provider, any database accessible through ODBC can be accessed as

a SQL Server linked server. Once a database is configured as a linked server any SQL

Server application can use the linked server‟s tables just like any other table in the SQL

Server database. The following diagram illustrates how a linked server is used to access a

TurboIMAGE database on an HP e3000.

SQL Server linked servers are especially useful for new client/server applications that

will use SQL Server as the main database, but need some access to legacy data on an HP

e3000. The application could make use of two connections, one to the SQL Server

database and another through ODBC to the TurboIMAGE database. The main

disadvantages of this scenario are:

1. The connection information for both databases would have to be configured

on each client machine.

2. Each client machine would have to have an ODBC driver that can access HP

e3000 database(s) installed on it. Additionally, an ODBC datasource for

access to the HP e3000 database(s) would have to be duplicated on each

client.

3. Each client machine would need network access to the HP e3000.

Using a linked server in the SQL Server database to access the HP e3000 database(s)

resolves these problems as follows:

1. The connection information for the HP e3000 database(s) is part of the

machine. The application only needs to know how to connect to the SQL

Server machine.

2. The ODBC driver that accesses HP e3000 database(s) only needs to be

installed on the SQL Server machine. The datasource for accessing the HP

e3000 database(s) would be kept and maintained on the SQL Server

machine.

3. Each client only needs network access to the SQL Server machine. The SQL

Server machine is the only one that needs network access to the HP e3000.

 Page | 94

Sample Application

Anwar, Inc. is a provider of telephony equipment. Each new customer gets assigned to a

team at Anwar, Inc. which handles all of the customer‟s needs. A typical team would

consist of personnel from the sales, technical, and administrative departments at Anwar,

Inc. At the present time, it is a time consuming and confusing task to introduce all the

members of the team to the customer. Management at Anwar, Inc. would like IT to

develop a Web site for the customer to use that would contain all of the team members,

their pictures, and their contact information.

At this point the personnel system and Anwar, Inc., which is on the HP e3000, has all of

the employees with their contact information, but does not contain their pictures. Also the

basic customer information is on the HP e3000, but team assignments for each customer

are kept manually.

The proposal is to create a SQL Server database to store the team assignments and

personnel pictures and use linked servers in the SQL Server database to access personnel

contact information and customer information from the HP e3000. Since the application

will be web-based, the NT machine that has the SQL server database, will also be a web

server.

Two tables will go in the SQL Server database CustomerAccess. They are

The tables on the HP e3000 that will be accessed are

In order to access the HP e3000 from the SQL Server machine, an ODBC datasource

called HP e3000 will be setup. The configuration of the datasource will vary depending

on the ODBC driver used. The following section shows the configuration in ODBC/32

with ODBC/32 Administrator.

Creating the ODBC Data Source

1. From the ODBC DataSource Administrator (Figure 21) create a New User

 Page | 95

DSN called HP3000. If you need help creating the DSN refer to Chapter 3 on

Configuring a Data Source with ODBC/32 Administrator.

Figure 21

2. Once the DSN for accessing the HP e3000 database(s) is configured, the

SQL Server Enterprise Manager can be used to configure a linked server.

Configuring a linked server

Using SQL Server Enterprise Manager:

1. Expand the Security tree and right mouse click on the Linked Servers label.

Select New Linked Server and configure the linked server as shown in Figure

8-11.

2. As shown in Figure 8-11, the linked server is given a name, OLE DB

provider is selected, and the datasource for the OLE DB provider is named.

In this case the OLE DB provider is Microsoft OLE DB Provider for ODBC

Drivers and the datasource is HP3000.

 Note: If needed, there are additional options for security that may be

 Page | 96

configured in Figure 22.

Figure 22

3. At this time the linked server is ready to be accessed.

Creating sample application using the development tools

Any development tool that can access SQL Server can use linked servers. This would

include Visual Basic, PowerBuilder, Delphi, FrontPage and many others. Linked servers

also are very useful in developing queries that retrieve data from many different

databases on many different machines. There are new applications available on the NT

platform that will use SQL Server. Using linked servers is a powerful way to give these

new applications access to legacy data.

In the following example we will use Visual InterDev to set up an Active Server Page to

access data through a SQL Server.

After a new Active Server Page and Data Connection have been created in a new project,

the configuration for the Data Connection is as follows:

1. In the Connection1 Properties dialog box (Figure 23), select Build under the

 Page | 97

General tab to build your connection string.

Figure 23

2. Under the Provider tab select Microsoft OLE DB Provider for SQL Server

and select Next, as shown in Figure 24:

 Page | 98

Figure 24

3. Select the Connection tab as shown in Figure 25 and enter your valid user

login information and select Test Connection. If connection proves

successful, select OK.

 Page | 99

Figure 25

4. Selecting OK from the Data Link Properties dialog box will bring you back

to the Connection1 Properties dialog box (Figure 8-12), select OK.

5. After the data connection is created and tested a RecordSet control is

dropped on the Active Server Page and configured. This configuration will

control how the data is retrieved from the databases. In this case four data

tables will need to be joined by an SQL SELECT statement, to execute a

distributed query against the SQL Server (See Figure 26).

 Page | 100

Figure 26

 The data access of the Active Server Page is complete. Additional work

would have to be done to format the page, and add controls to display the

data. Most likely, an additional start-up page, querying the user for their

customer number and password would be added, this would be linked to the

Active Server Page when the customer was validated.

MS Excel

1. When Microsoft Excel opens, click Data > Get External Data > Create New

Query as shown in Figure 27.

 Page | 101

Figure 27

2. The Choose Data Source dialog box will appear (Figure 9-2). Click mscard*

from the Databases tab, then click OK.

Figure 9-2

3. From the dialog box shown in Figure 9-3 choose available tables and

columns to add to your query, click the right arrow to add, then click Next.

 Page | 102

Figure 9-3

4. As shown in Figure 9-4, click Next.

Figure 9-4

5. As shown in Figure 9-5, click Next.

 Page | 103

Figure 9-5

6. Under What Would You Like To Do Next, click Return Data to Microsoft

Excel, then click Finish as shown in Figure 9-6.

Figure 9-6

7. Under Where Do You Want To Put The Data, click Existing Worksheet, and

then click OK as shown in Figure 9-7.

 Page | 104

Figure 9-7

8. Microsoft Excel - Notebook will appear with your query information, as

shown in Figure 9-8.

Figure 9-8

Seagate’s Crystal Reports

1. Select New Report, as shown in Figure 9-9:

 Page | 105

Figure 9-

2. As shown in Figure 9-10, choose Standard from the Report Gallery:

Figure 9-1

3. Under the Data tab (Figure 9-11) select SQL/ODBC from the list of data to

report on:

 Page | 106

Figure 9-1

4. The Log On Server dialog box appears (Figure 9-12) select the ODBC data

source you created earlier from the list, then press OK:

Figure 9-1

5. From the Choose SQL Table dialog box (Figure 9-13) add your dataset, then

click Add:

 Page | 107

Figure 9-1

6. Then select Done as shown in Figure 9-14:

Figure 9-1

7. You will then be brought back to the Data tab in the Standard Report Expert

dialog box, as shown in Figure 9-15. Select Next:

 Page | 108

Figure 9-1

8. Under the Fields tab (Figure 9-16) add some or all fields, then select Next:

9. Under the Sort tab (Figure 9-17) add a sort field, then select Preview Report:

 Page | 109

Figure 9-1

10. Data from your dataset will be displayed in a default format. You can now

adjust the report layout.

Crystal Reports three table join

To create a three table inner join in Crystal Reports, you will need to add an OuterJoin

key to your registry. This will allow Crystal Reports to generate the correct syntax for

your ODBC driver. The following instructions will show you how:

1. Edit your registry. From the taskbar click Start > Run and enter “regedit”

then click OK.

2. Find the following key:

 HKEY_CURRENT_USER/Software/Seagate Software/Crystal

Reports/DatabaseOptions/OuterJoin

3. If there is no OuterJoin key, click DatabaseOptions on the menu bar. Click

Edit > New > Key. Enter OuterJoin for the value.

4. Click OuterJoin. On the menu bar, click Edit > New > String Value. Type

 Page | 110

SQL2outerjoin for the key value. Press Enter.

5. With SQL2outerjoin highlighted on the menu bar click Edit > Modify. In the

Value data field enter 3kodbc, then click OK.

6. You will now be able to do a three table (or more) inner join in Crystal

Reports. Unfortunately this fix breaks the outerjoin functionality. In order to

perform an outerjoin you will need to edit the SQL code and add the

following highlighted code ({oj }) to your Select statement:

SELECT

TRACK_DETAIL.”PROBLEM_ID”, TRACK_DETAIL.”COMPANY”,

TRACK_DETAIL.”MASTER_ID”,

MASTER_DETAIL.”MASTER_ID”, MASTER_DETAIL.”MASTER_DESC”

FROM

 {oj “TRACX”.”TRACK_DETAIL” TRACK_DETAIL LEFT OUTER JOIN

 “TRACX”.”MASTER_DETAIL”

 MASTER_DETAIL ON TRACK_DETAIL.”MASTER_ID” =

 MASTER_DETAIL.”MASTER_ID”}

 Page | 111

9. Using JDBC

JDBC Classes and Interfaces

The JDBC classes and interfaces are declared in java.sql. The classes are the common

components of JDBC. The main class is the DriverManager. Use the DriverManager

class to make a connection to a database. Other classes in java.sql are used for date

handling, exception handling and common constants. The interfaces in java.sql are the

blueprints used by JDBC driver developers to create a JDBC driver. Each JDBC driver

must contain classes that implement the interfaces in java.sql. A typical JDBC driver is a

set of these classes, plus some support classes, contained in an archive.

The Big Four

Basic data access through JDBC can be accomplished using only four JDBC classes.

They are:

 DriverManager

 Connection

 Statement

 ResultSet

You can access these classes through the interfaces since each of the driver‟s classes are

implementations of the interfaces described in java.sql. This means that you only need to

specify which driver to use during the connection request. After that the code is driver

independent.

Registering the driver

The first step in using a JDBC driver is to register it with the DriverManager. A common

way to do this is shown below:

 Page | 112

Class.forName (“com.minisoft.jdbc.MSJDBCDriver”);

The forName method of the Class class returns a Class object associated with the class

with the given string name. This is not needed but the code will force the class named by

the string to be loaded. The class name of the JDBC driver is

“com.minisoft.jdbc.MSJDBCDriver”. When the JDBC driver is loaded it will register

itself with the DriverManager.

Connecting to a database

Now that the driver is registered with the DriverManager, you can request a connection

to a database. The getConnection method of the DriverManager class will do this. This is

illustrated below:

Connection con=DriverManager.getConnection

(“jdbc:MSJDBC//127.0.0.1:30504/MSDB”);

The string parameter is a url which describes the connection. The first part “jdbc” is the

main protocol. The second part “MSJDBC” is a sub-protocol that identifies Minisoft‟s

JDBC driver. The DriverManager will use the sub-protocol to query each registered

driver to see if the driver handles this sub-protocol. The third and subsequent parts

identify how to connect to the database.

Note: This is driver specific. In this case, using Minisoft‟s JDBC driver, the third part is

specifying an IP address and port number for the mid-tier server, while the fourth part is

specifying a datasource. The datasource contains the HP3000 specific information to

connect to the database(s).

Connecting using connection properties

MiniSoft‟s JDBC driver also supports another form of getConnection, in which

connection properties can be passed. This form of getConnection is shown in Figure 28.

String url = “jdbc:MSJDBC://127.0.0.1:30504/”;
Properties p = new Properties () ;
p.put (“Server”, “data.minisoft.com”);
p.put (“Server Port”, “31100”);
p.put (“User”, “MGR”);
p.put (“User Password”, “HEREYAGO”);
p.put (“Account”, “MINISOFT”);
p.put (“Group”, “MM”) ;
p.put (“Database0”, “MSDB,DBPSWD,1,5”);
Connection con = DriverManager.getConnection (url, p);

Figure 28

 Page | 113

For a list of all properties supported see chapter 4 on JDBC API Reference. By using this

form of getConnection you do not need a datasource set up on the mid-tier machine. You

can specify everything that is needed to connect to the database as a property.

The getConnection method returns an object from the selected driver that conforms to the

Connection interface. From now on, objects created by the driver that conform to an

interface in java.sql, will be referred to by their interface name, not the internal name of

the class in the driver. This is because you never need to know what the internal name is,

you always access the object through its interface. The Connection object can now be

used to create a Statement object.

Creating a Statement Object

To create a Statement Object use the example shown below:

Statement stmt = con.createStatement ();

The createStatement method of a Connection object returns a Statement object. The

Statement object can now be used to execute a SQL query with the executeQuery method

as shown below:

ResultSet rs = stmt.executeQuery (“SELECT * FROM CUSTOMERS”);

This will execute the SQL statement passed as a parameter and create a ResultSet object.

The ResultSet object can now be used to retrieve the results of the SQL statement as

shown below:

while (rs.next ()) {

s = rs.getString (“CUSTOMER_NUMBER”);

System.out.println (s);

s = rs.getString (“CUSTOMER_NAME”);

System.out.println (s);

s = rs.getString (“ADDRESS1”);

System.out.println (s);

s = rs.getString (“ADDRESS2”);

System.out.println (s);

s = rs.getString (“CITY”);

System.out.println (s);

s = rs.getString (“STATE”);

System.out.println (s);

s = rs.getString (“COUNTRY”);

System.out.println (s);

 Page | 114

s = rs.getString (“ZIP”);

System.out.println (s);

s = rs.getString (“DATE”);

System.out.println (s);

}

The Next method obtains the next record from the result set. The getString method is used

to return data from a column. The parameter can be either a column name as a string or a

column number (1 based). The getString method is normally used to return alphanumeric

columns, although some drivers will return any data type as a string. If you need to

retrieve the data in its normal data type, there are get... methods for all the various data

types.

Exiting JDBC

It is good practice to exit a program gracefully, although the JDBC driver will take care

of things if you do not. To exit the JDBC program use the code shown below:

rs.close ();

stmt.close ();

con.close ();

When the close method of a Connection object is called, it will request the close method

of any Statement objects it created. Similarly, when the close method of a Statement

object is called it will request the close method of any ResultSet objects it created. Given

this scenario, you could just call con.close.

A complete example that puts together all the above code pieces with added exception

handling is shown in Figure 29.

The exception handling catches any exceptions thrown by the JDBC methods. Many of

the methods in JDBC can throw a SQLException. Printing out the exception will

typically show the error message.

 Page | 115

import java.sql.*;
public class FirstDBAccess
{
 public static void main (String [] args)
 {
 try {
 Class.forName (“com.minisoft.jdbc.MSJDBCDriver”);
 String url = “jdbc:MSJDBC://127.0.0.1:30504/MSDB”;
 Connection con = DriverManager.getConnection (url);
 try {
 Statement stmt = con.createStatement ();
 String query = “SELECT * FROM CUSTOMERS”;
 ResultSet rs = stmt.executeQuery (query);
 while (rs.next ()) {
 s = rs.getString (“CUSTOMER_NUMBER”);
 System.out.println (s);
 }
 stmt.close ();
 }
 catch (SQLException e2)
 {
 System.out.println (e2);
 }
 con.close ();
 }
 catch (SQLException e0)
 {
 System.out.println (e0);
 }
 catch (ClassNotFoundException e1)
 {
 System.out.println (e1);
 }
 }
}

Figure 29: A complete application that retrieves data from a TurboImage database.

Prepared Statements and Parameters

In many situations you will want to execute essentially the same statement a number of

times. The only difference between each execution of the statement might be some

selection criteria or update values.

For example, if you needed to retrieve customer information by customer number based

upon a customer number entered by the user. When the user requested customer number

„000001‟, you could build a string that contained “SELECT * FROM CUSTOMERS

WHERE CUSTOMER_NUMBER = „000001‟” and execute it. Then when the user

requested customer number „000002‟, you would build a string that contained “SELECT

* FROM CUSTOMERS WHERE CUSTOMER_NUMBER = „000001‟” and execute it.

This method is very inefficient because the driver will have to compile essentially the

 Page | 116

same statement many times.

The preferred way to accomplish this task is to use a statement that contains parameters

and compile it. Once prepared, you can supply values for the parameters and execute the

statement as many times as needed without compiling it again. Instead of using the

createStatement method of a Connection object, you can use the prepareStatement

method. Its one parameter is a string that contains the SQL statement to prepare. The

prepareStatement method returns a PreparedStatement object, which is a subclass of the

Statement class. The PreparedStatement class has set… methods to set the values of

parameters. Figure 30 illustrates preparing a statement, setting its parameters and

executing it many times.

SQL statements use the question mark („?‟) to mark the position of the parameters. The

parameters are numbered, starting at 1, in the order they appear in the statement. The

setString method‟s first parameter is the parameter number, its second is the value for the

parameter. All parameter values can be cleared with the clearParameters method.

void DoneOneTime ()
{
 ...
 Connection con = DriverManager.getConnection (url);
 String query = “SELECT * FROM CUSTOMERS WHERE
 CUSTOMER_NUMBER = ?”;
 PreparedStatement stmt = con.prepareStatement (query);
 ...
}

void DoneManyTimes (String CustomerNumber)
{
 stmt.setString (1, CustomerNumber);
 ResultSet rs = stmt.executeQuery ();
 ...
}

Figure 30: A prepared statement with parameters.

Metadata

Metadata is data which describes data. There are two types of metadata objects that a

JDBC driver can provide. One is based upon the DatabaseMetaData interface and the

other is based upon the ResultSetMetaData interface.

The DatabaseMetaData class mainly contains methods to gather information concerning

a database. The most common information is the names of the tables in the database and

 Page | 117

the layout of those tables. Other less frequently used information is access privileges and

the relationships between tables. A DatabaseMetaData object is created with the

getMetaData method of a Connection object. Figure 31 illustrates using a

DatabaseMetaData object to retrieve the names of all the tables in a database.

 The getTables method returns a ResultSet object that is used to retrieve the information

about the tables. Each row in the result set has 5 columns as follows:

1. TABLE_CAT String => table catalog (may be null).

2. TABLE_SCHEM String => table schema (may be null).

3. TABLE_NAME String => table name.

4. TABLE_TYPE String => table type. Typical types are “TABLE”, “VIEW”,

“SYSTEM TABLE”, “GLOBAL TEMPORARY”, “LOCAL

TEMPORARY”, “ALIAS” and “SYNONYM”.

5. REMARKS String => explanatory comment on the table.

Depending to the driver, the TABLE_CAT and/or the TABLE_SCHEM columns may be

null indicating that these are not attributes of the database the driver supports. Figure 4

illustrates loading table names into a list box.

...

 Connection con = DriverManager.getConnection (url);
 Choice tableNames = new Choice ();
 DatabaseMetaData md = con.getMetaData ();
 String [] types = { “TABLE” };
 ResultSet mrs = md.getTables (null, “”, “”, types);
 while (mrs.next ()) {
 tableNames.addItem (mrs.getString (3));
 }
}
...

Figure 31: Loading table names into a list box.

The ResultSetMetaData class contains methods to gather information about a result set.

This information contains the number of columns in each row of the result set and the

layout of each column. This information is very useful to programs that need to

dynamically create the layout for displaying data from a database. A ResultSetMetaData

object is created with the getMetaData method of a ResultSet object. Figure 32 shows

how to gather and use the data type of a result set column.

 Page | 118

String s;
int i;

...

Connection con = DriverManager.getConnection (url);
Statement stmt = con.createStatement ();
ResultSet rs = stmt.executeQuery (“SELECT * FROM CUSTOMERS”);
ResultSetMetaData md = rs.getMetaData ();
while (rs.next ()) {
 int col;
 for (col = 1; col <= md.getColunmCount; ++col) {
 switch (md.getColumnType (col)) {
 case Types.CHAR :
 s = rs.getString (col);

...

 break;
 case Types.INTEGER:
 i = rs.getInt (col);

...

 break;

...

 }
 }
}

Figure 32: Using ResultSetMetaData to get a column’s data type.

Adding, Updating and Deleting Data

JDBC can be used to add, update and/or delete records in a table. The executeUpdate

method of a Statement (or PreparedStatement) object is used to execute SQL INSERT,

UPDATE and DELETE statements. The return of the executeUpdate method indicates

the number of records affected by the SQL statement. The setting of auto-commit for the

Connection object determines if each statement is committed automatically, or if an

explicit commit or rollback must be done. If auto-commit is on, then each statement

executed with executeUpdate method will be committed immediately. If auto-commit is

off, a commit or rollback will only be done when a commit or rollback method of the

Connection object is called.

By default, new connections start with auto-commit on. Different drivers handle locking,

transaction isolation and concurrency differently. The driver‟s documentation will need

to be consulted to determine how the driver behaves, and how compatible it will be with

 Page | 119

other applications that are accessing the database. Figure 33 demonstrates adding a

customer record to the customers table, while querying and updating the next value for

customer numbers.

Connection con = DriverManager.getConnection (url);
con.setAutoCommit (false);

...

Statement stmt1 = con.createStatement ();
ResultSet rs = stm1.executeQuery (“SELECT NEXT_NUMBER FROM
NEXT_NUMBERS WHERE CATAGORY = „CU‟”);
rs.next ();
int nextCust = getInt (1);
PreparedStatement stmt2 = con.prepareStatement (“INSERT INTO
CUSTOMERS (CUSTOMER_NUMBER, ...) VALUES (?,...)”);
stmt2.setInt (1, nextCust);

...

stmt2.executeUpdate ();
PreparedStatement stmt3 = con.prepareStatement (“UPDATE
NEXT_NUMBERS SET NEXT_NUMBER = ? WHERE CATAGORY = „CU‟”);
stmt3.setInt (1, ++nextCust);
stmt3.executeUpdate ();
con.commit ();

...

Figure 33: INSERT and UPDATE in a single transaction.

JDBC API Reference

The following is a reference to the most commonly used methods of the JDBC API. A

reference of the complete JDBC API can be found on the JavaSoft web site at

www.javasoft.com.

DriverManager Methods

getConnection

This method requests a connection to a database. If a connection is made, a Connection

object is returned.

Example:

 Page | 120

public static synchronized Connection getConnection(String url)

throws SQLException

public static synchronized Connection getConnection(String url,

Properties info) throws SQLException

Parameters:

url - A string which describes the connection in the form

“jdbc:MSJDBC://<mid-tier server host name>[:<mid-tier server

port>][/<datasource>].

The main protocol. <mid-tier server host name> and < mid-tier server

port> identify the machine the mid-tier server is running on and the TCP

port it is listening on.

<datasource> specifies datasource on the mid-tier server machine that

contains the HP3000 specific information to connect to the database(s).

info – A Properties collection that contains the HP3000 specific

information to connect to the database(s). Information in the info

parameter will override information contained in a datasource. The

available properties are:

2DriverTable - <name of a translation table file for translating data

coming to the client>

2HostTable - <name of a translation table file for translating data going

from the client>

Account - <HP3000 logon account>

Account Password - <HP3000 logon account password>

Database<n> - <database name to access on the HP3000>,<database

password>,<load auto master flag>,<database open mode>

DecimalPoint - <decimal point character>

Group - <HP3000 logon group>

Group Password - <HP3000 logon group password>

Jobname - <jobname>

Langauge - <NLS language>

Schema<n> - <name of the schema file>,<lockword>

Server - <HP3000 IP address or hostname>

Server Port - <server TCP port>

User - <HP3000 user logon>

User Password=<HP3000 user password>

 Page | 121

Note: All property names are case sensitive.

For the properties Database<n>, and Schema<n>, <n> indicates a number, starting with

0. The first database defined would be with property “Database0”, the second would be

with “Database1”, and so on.

The values for <load auto master flag> is 1 to load automatic masters and 0 not to load

automatic masters.

The values for <database open mode> are the same as on the DBOPEN intrinsic, i.e. 1 –

8.

Connection Methods

createStatement

This method creates a Statement object. This is typically used when the statement has no

parameters and is only going to be executed once.

Example:

public abstract Statement createStatement() throws SQLException

PrepareStatement

Creates a PreparedStatement object that represents a compiled SQL statement. This is

typically used when the statement contains parameters, or when the statement will be

executed more than once.

Example:

public abstract PreparedStatement prepareStatement(String sql) throws

SQLException

Parameters:

sql - A string which contains the SQL statement to compile.

setAutoCommit

Sets the state of the connection‟s auto-commit mode. If a connection‟s auto-commit

mode is true, then each statement that modifies the database will be committed upon

completion. If a connection‟s auto-commit mode is false, then data will only be

 Page | 122

committed to the database when the commit method is called.

Example:

public abstract void setAutoCommit(boolean autoCommit) throws

SQLException

Parameters:

autoCommit - The state to set the auto-commit mode.

commit

Commits any changes made by SQL statements since the transaction started to the

database. Transactions are automatically started when the first SQL statement that

modifies the database is executed.

Example:

public abstract void commit() throws SQLException

rollback

Cancels and changes made by SQL statements since the transaction started.

Example:

public abstract void rollback() throws SQLException

close

Closes the connection and all open databases, statements and result sets.

Example:

public abstract void close() throws SQLException

getMetaData

Creates a DatabaseMetaData object. The DatabaseMetaData object is used to provide

information about the connection and the open database(s).

Example:

public abstract DatabaseMetaData getMetaData() throws SQLException

 Page | 123

Statement Methods

executeQuery

Compiles and executes a SQL statement and returns a ResultSet object.

Example:

public abstract ResultSet executeQuery(String sql) throws

SQLException

Parameters:

sql - A string containing the statement to be executed.

executeUpdate

Executes a DELETE, INSERT or UPDATE SQL statement. The return is the number of

records effected by the SQL statement.

Example:

public abstract int executeUpdate(String sql) throws SQLException

Parameters:

sql - A string containing the statement to be executed.

close

Closes the Statement and its current ResultSet if one exists.

Example:

public abstract void close() throws SQLException

PreparedStatement Methods

executeQuery

Executes a previously compiled SQL statement and returns a ResultSet object.

Example:

public abstract ResultSet executeQuery() throws SQLException

 Page | 124

executeUpdate

Executes a previously compiled DELETE, INSERT or UPDATE SQL statement.

Example:

public abstract int executeUpdate() throws SQLException

Set...

public abstract void setShort(int parameterIndex, short x) throws

SQLException

public abstract void setInt(int parameterIndex, int x) throws

SQLException

public abstract void setLong(int parameterIndex, long x) throws

SQLException

public abstract void setFloat(int parameterIndex, float x) throws

SQLException

public abstract void setDouble(int parameterIndex, double x) throws

SQLException

public abstract void setBigDecimal(int parameterIndex, BigDecimal x)

throws SQLException

public abstract void setString(int parameterIndex, String x) throws

SQLException

public abstract void setDate(int parameterIndex, Date x) throws

SQLException

Set the value of a parameter in a SQL statement.

Parameters:

parameterIndex - The number of the parameter in the SQL statement,

starting at 1.

x - The value for the parameter.

clear Parameters

Clears all SQL statement parameters.

Example:

public abstract void clearParameters() throws SQLException

 Page | 125

ResultSet Methods

next

Fetches the next available row of a result set.

Example:

public abstract boolean next() throws SQLException

close

Closes a ResultSet.

Example:

public abstract void close() throws SQLException

Get...

public abstract String getString(int columnIndex) throws SQLException

public abstract short getShort(int columnIndex) throws SQLException

public abstract int getInt(int columnIndex) throws SQLException

public abstract long getLong(int columnIndex) throws SQLException

public abstract float getFloat(int columnIndex) throws SQLException

public abstract double getDouble(int columnIndex) throws

SQLException

public abstract BigDecimal getBigDecimal(int columnIndex, int scale)

throws SQLException

public abstract Date getDate(int columnIndex) throws SQLException

public abstract String getString(String columnName) throws

SQLException

public abstract short getShort(String columnName) throws

SQLException

public abstract int getInt(String columnName) throws SQLException

public abstract long getLong(String columnName) throws

SQLException

public abstract float getFloat(String columnName) throws

SQLException

public abstract double getDouble(String columnName) throws

SQLException

public abstract BigDecimal getBigDecimal(String columnName, int

scale) throws SQLException

public abstract Date getDate(String columnName) throws

SQLException

 Page | 126

Returns the value of a column from the current row within the result set.

Parameters:

columnIndex - The number of the columns together starting at 1.

columnName - The name of the column to get.

getMetaData

Returns a ResultSetMetaData object that has information about this ResultSet.

Example:

public abstract ResultSetMetaData getMetaData() throws SQLException

findColumn

Obtains a column number that corresponds to a column name.

Example:

public abstract int findColumn(String columnName) throws

SQLException

Parameters:

columnName - The name of the column.

ResultSetMetaData Methods

getColumnCount

Finds the number of columns in the ResultSet.

Example:

public abstract int getColumnCount() throws SQLException

getColumnDisplaySize

Obtains the number of characters necessary to display the data from a column.

Example:

public abstract int getColumnDisplaySize(int column) throws

SQLException

 Page | 127

Parameters:

column - Column number.

getColumnName

Obtains the name of a column in the ResultSet.

Example:

public abstract String getColumnName(int column) throws

SQLException

Parameters:

column - Column number.

getColumnType

Obtains the data type of a column in the ResultSet. Data type constants are defined in

java.sql.Types.

Example:

public abstract int getColumnType(int column) throws SQLException

Parameters:

columns - Column number.

DatabaseMetaData Methods

getTables

Obtains a ResultSet object containing information about the tables within the database.

Example:

public abstract ResultSet getTables(String catalog, String schema,

String tableName, String types[]) throws SQLException

Parameters:

catalog - Ignored. Catalog is not supported by MiniSoft‟s JDBC driver.

schema - The name of schema to search for tables. A schema name is

either a database name or a schema editor file name. If empty all

 Page | 128

schemas are searched.

tableName - The name of a table to gather information about. If empty

information about all the tables is returned.

types - An array of strings designating the types of tables to be included.

If empty all types are included. The only type supported is “TABLE”.

The columns in the ResultSet are:

1. TABLE_CAT string => table catalog (may be null).

2. TABLE_SCHEM String => table schema (may be null).

3. TABLE_NAME String => table name.

4. TABLE_TYPE String => table. Typical types are “TABLE”, “VIEW”,

“SYSTEM TABLE”, “GLOBAL TEMPORARY”, “LOCAL

TEMPORARY”, “ALIAS” and “SYNONYM”.

5. REMARKS String => explanatory comment on the table.

getColumns

Obtains a ResultSet object containing information about the columns in the table.

Example:

public abstract ResultSet getColumns(String catalog, String schema,

String tableName, String columnName) throws SQLException

Parameters:

catalog - ignored. Catalog is not supported by MiniSoft‟s JDBC driver.

schema - The name of a schema. A schema name is either a database

name or a schema editor file name. If empty all schemas are searched.

tableName - The name of a table to gather the column information for.

columnName - The name of a column. If empty includes all columns.

The columns in the ResultSet are:

1. TABLE_CAT String => table catalog (may be null)

2. TABLE_SCHEM String => table schema (may be null)

 Page | 129

3. TABLE_NAME String => table name

4. COLUMN_NAME String => column name

5. DATA_TYPE short => SQL type from java.sql.Types

6. TYPE_NAME String => Data source dependent type name

7. COLUMN_SIZE int => column size. For char or date types this is the

maximum number of characters, for numeric or decimal types this is

precision.

8. BUFFER_LENGTH is not used

9. DECIMAL_DIGITS int => the number of fractional digits

10. NUM_PREC_RADIX int => Radix (typically either 10 or 2)

11. NULLABLE int => is NULL allowed?

columnNoNulls - might not allow NULL values

columnNullable - allows NULL values

columnNullableUnknown - nullability unknown

12. REMARKS String => comment describing column (may be null)

13. COLUMN_DEF String => default value (may be null)

14. SQL_DATA_TYPE int => unused

15. SQL_DATETIME_SUB int => unused

16. CHAR_OCTET_LENGTH int => for char types the maximum number of

bytes in the column

17. ORDINAL_POSITION int => index of column in table (starting at 1)

18. IS_NULLABLE String => “NO” means column definitely does not allow

NULL values; “YES” means the column might allow NULL values. An

empty string means no one knows.

getIndexInfo

Get a ResultSet object containing information about the indexes or keys for the table.

 Page | 130

Example:

public abstract ResultSet getIndexInfo(String catalog, String schema,

String table, boolean unique, boolean approximate) throws

SQLException

Parameters:

catalog - Ignored. Catalog is not supported by MiniSoft‟s JDBC driver.

schema - The name of schema. A schema name is either a database name

or a schema editor file name. If empty all schemas are searched.

table - The name of a table to gather the column information for.

approximate - Ignored. All statistics are exact.

The columns in the ResultSet are:

1. TABLE_CAT String => table catalog (may be null)

2. TABLE_SCHEM String => table schema (may be null)

3. TABLE_NAME String => table name

4. NON_UNIQUE boolean => Can index values be non-unique? False when

TYPE is tableIndexStatistic.

5. INDEX_QUALIFIER String => index catalog (may be null); null when

TYPE is tableIndexStatistic

6. INDEX_NAME String => index name; null when TYPE is

tableIndexStatistic

7. TYPE short => index type:

tableIndexStatistic - identifies table statistics that are returned in

conjugation with a table‟s index descriptions.

tableIndexClustered - is a clustered index.

tableIndexHashed - is a hashed index.

tableIndexOther - is some other style of index.

8. ORDINAL_POSITION short => column sequence number within index;

zero when TYPE is tableIndexStatistic

 Page | 131

9. COLUMN_NAME String => column name; null when TYPE is

tableIndexStatistic

10. ASC_OR_DESC String => column sort sequence, “A” => ascending, “D”

=> descending, may be null if sort sequence is not supported; null when

TYPE is tableIndexStatistic

11. CARDINALITY int => When TYPE is tableIndexStatistic, then this is the

number of rows in the table; otherwise, it is the number of unique values in

the index.

12. PAGES int => When TYPE is tableIndexStatisic then this is the number of

pages used for the table, otherwise it is the number of pages used for the

current index.

13. FILTER_CONDITION String => Filter condition, if any (may be null).

 Page | 132

10. Using OLE DB

Building Client/Server Applications

"OLE DB" opens the door to a rich set of development tools and platforms for Microsoft

Windows Servers. Microsoft has announced that OLE DB will be the method by which

all information is accessed. The Microsoft OLE DB to ODBC Bridge known as

MSDASQL is NOT available for the 64-bit environment. The roadmap for future

Microsoft applications requires using OLE DB data sources to "provide uniform access to

data stored in diverse information sources". The Minisoft OLE DB Provider provides that

access to your existing Image and Eloquence databases.

Use the Minisoft OLE DB Provider for Image/Eloquence to help solve the following

problems:

 Transparent access to your Image/Eloquence data from the 32-bit or 64-bit

editions of SQL Server 2005.

 Integrate Image or Eloquence database access smoothly into your .NET

application development environment.

 Continue accessing Image or Eloquence data with Microsoft Visual Studio,

Borland development tools, Microsoft Access (through VBA), ActiveX Scripts,

Crystal Reports, Windows Scripting, IIS web applications (ASP and ASP.NET)

by using the Minisoft OLE DB Provider

FAQ

How do I create a Connection String?

A Connection String (or Provider String, or Extended Properties - depending on what

application you are running) consists of the driver specific properties separated by

 Page | 133

semicolons. At the very least it needs to consist of ServerPort, logon information, and

database and/or schema file references. For example:

ServerPort=30009;User=xxx;UserPassword=xxx;Group=xxxt;Account=MINISOFT;

ImageDatabase0=ABC,PW,0,1,0

See Connection Properties (on page 37) for connection string parameters.

How do I create a Linked Server?

Run SQL Server Management Studio and expand out Server Objects. Right click on

Linked Servers and select “New Linked Server…”

Linked Server - This is the name you will use to reference your Linked Server. It can be

anything.

 Page | 134

Server Type - Select “Other data source”.

Provider - Select the “Minisoft OLE DB Provider for Image/Eloquence”.

Product Name - This field can not be left blank, but the value can be anything. The

suggested value is “HP3KProvider”.

Data Source - The IP Address or Host Name of the box running Image/Eloquence. This

field can be left blank if the information is included in the “Provider String”.

Provider String - A list of properties separated by a semi-colon. At the very least it needs

to consist of ServerPort, logon information, and database and/or schema file references.

Please refer to xyz for a list of properties and Provider String examples.

How do I use character string searches in four part names with SQL Server 2005?

Each linked server will need to have the "Collation Compatible" Server Option checked.

 Page | 135

 Page | 136

A. Third-Party Indexing
If you use Schema Editor Files, you must recreate the links to your datasets any time the

Indexing is changed. This step is required to pass the key information to the client

application where it is stored.

All the TPI keys will appear as read-only items in the table.

If a TPI key has the same name as a TurboImage item, the TPI key item name will have

“_TPI” appended to it. (This feature can be suppressed. See ImageDatabase<n> on page

40.)

In order to find records using a TPI key you must specify the TPI key item in the

WHERE clause. You must update your WHERE clause on existing statements to use the

TPI key, instead of the TurboImage item indexed by the key.

Specifying values for TPI keys

For X and U type items

If an item has a generic type key and the relational operator is =, the value of the

selection criteria may contain the exact value or a value containing the @, ?, and #

wildcard characters. The @ wildcard character is required to be at the end of the value.

For example:

UNITED@

finds any values starting with UNITED.

If the key is a generic type key you may also use the following relational operators: >,

>=, <, <=”, “ and LIKE.

If an item has a multiple-key type key and the relational operator is =, the value of the

selection criteria may contain:

 A value only.

 Page | 137

Example:

„ABC Manufacturing‟ finds any value that match exactly.

 A relational operator and a value.

Example:

„>B‟ finds any values that are greater than B.

 Any of the two above combined with AND and/or OR.

Example:

„>=B AND <C‟ finds any values greater than or equal to B and less than C.

Note: The value must immediately follow the relational operators (no spaces between

them).

If the key is a multiple-key type key, you may also use the following relational operators:

>=B AND „>=B AND, >=, <, <=”,” and LIKE.

If an item has a keyword type key, the value to the selection criteria may contain any

word to be searched for. It may also contain the @, ?, and # wildcard characters. The @

wildcard character is required to be at the end of the value. You may also use the LIKE

relational operator.

It is possible for an item to have more than one TPI key associated with it. If an item has

a keyword type key and a generic or multiple key type key, then use @ as the first

character of the selection criteria to specify a keyword search.

Examples:

‟@UNITED‟ finds any value with the word UNITED in it.

‟UNITED@‟ finds any value that starts with UNITED.

For numeric type items

You may use the following relational operators: =, >, >=, <, <=”, “ and BETWEEN. The

selection criteria may only contain the value to search for.

 Page | 138

Selection criteria for composite keys

Composite keys are always represented as X types. If all of the items that make up a

composite key are X or U types than the composite key value is the concatenation of its

composite items including any trailing or leading spaces. If any item of a composite key

is not an X or U type, then the items value must be represented as an X type. The

following shows how ODBC/32 represents composite items of various types:

 This Becomes

 I1, K1, J1 X6

 I2, K2, J2 X11

 I4, K4, J4 X20

 R2, E2 X13

 R4, E4 X22

 Zn X(n+1)

 Pn X(n*2)

The value may contain a plus or minus sign, and must always be right justified and left

padded with zeros. For example a composite key containing two items, where the first

item is a J2 with the value of 179210 and the second is an X10 with the value of 1 ABC

St, would have a value of 000001792101 ABC St.

 Page | 139

B. Technical Support

Frequently Asked Questions

Why does starting the Schema Editor fail with a comment about OLEAUT32.DLL?

The Schema Editor may need updated 32-bit OLE files for some users of the original

Win95. WinNT and OSR2 users do not need these files. Updated versions of these files

are in use on most Win95 systems.

How do I run more than one version of ODBCSRVR?

You can start more than one version of the ODBCSRVR program at the same time by

specifying both on the same MSSERVER000004 line.

Change the line:

!SETVAR MSSERVER000004 &

!”30006 0 ODBCSRVR.MM.MINISOFT S”

To:

!SETVAR MSSERVER000004 &

!”30006 0 ODBCSRVR.MM.MINISOFT S”+&

!”|31006 0 ODBCNEW.MM.MINISOFT S”

Port number 30006 in the DSN will start ODBCSRVR. Port number 31006 in the DSN

will start ODBCNEW.

Note: Do not add spaces before or after the pipe (|) character.

Why do I see #DELETED in every field when I open a (MASTER) table?

Why can I open and see data in a (DETAIL) table, but searches return no data?

Some Image numeric type values are treated as signed values. If they are not signed and

are key values, your results will not be as expected.

 Page | 140

You must create a database view using the Schema Editor to set the type of the value to

signed (NO).

Why do I get the following error message?

[Minisoft][3kodbc.dll] connect: Connection refused (#10061)

 Demonstration copies of the ODBC/32 driver expire. Please contact your

Minisoft sales representative about getting an extension.

 To look at the expiration date of your software, log on to your server and type in

the following commands:

HELLO MGR.MINISOFT,MM

FILE AF = MSSERVER

VINSTALL

 The updated ODBCSRVR was not uploaded with WS92 or NFT. Please delete

the ODBCSRVR and upload with the recommended software.

 The job MSJOB.MM.MINISOFT must be streamed prior to making client

connections.

 The port number specified on the client must match the port number in the

MSJOB file for the ODBCSRVR process. As shipped, this number is 30006.

 The address given in the DSN is not that of the HP e3000 CPU. Most TELNET

access to the HP e3000 is via an external box (DTC) and is a separate address

from the HP e3000.

 A fire wall or proxy server is not allowing connections on port 30006. Contact

your network administrator or use an allowed port.

Why do I get a message about not being able to start the server process?

The copy of ODBCSRVR on the host was not uploaded as a binary file with WS92 or

NFT. You must delete the invalid file, then upload with WS92 or NFT as a binary file.

You can test the upload by RUNning the ODBCSRVR and seeing a socket error message

from the MPE prompt.

Why do I get a nonexistent permanent file error message?

One of the following files does not exist or was not completely qualified: SCHEMA,

DATABASE or any of the tables specified by the SCHEMA.

 Page | 141

Remember that the SCHEMA referenced by the Data Source Name (DSN) refers to a

files created by the Schema Editor application and not the Image Schema file. Check that

ALL the tables in your schema exist and are accessible.

Why is the list of available tables empty (or incomplete)?

The TurboImage password is incorrect. This password is case-sensitive and must be

entered carefully. There can be several passwords that allow access to more or fewer of

the datasets and fields.

If you are unaware of the password, see Chapter 3 on Using DBUTIL to find database

passwords.

I cannot search on my TPI keys?

When upgrading to a version of ODBC/32 that supports TPI (1.1.0.6 or later) from an

earlier version (1.1.0.5 or earlier), you must recreate the links to your datasets. This step

is required to pass the key information to the client application where it is stored.

Tracing Facilities

Minisoft support personnel may ask for tracing of unanticipated conditions. This document details

what features are available for recording and how they are used. These features are available in

version 2.2.6.2 or later.

Driver (Client) Side Tracing

Windows

There are four items on the Options Tab of the Data Source Configuration dialog that control

client tracing on Windows based systems.

 Trace System Level

 Trace Log Level

 Trace Flush Writes

 Trace Log File Name

 Page | 142

These items are detailed in the next section.

Unix and Java

Four values control the event recording features of the driver. They may be set in the DSN or

from the current shell.

 TraceSysLevel

 TraceLogLevel

 TraceLogFlush

 TraceFileName

TraceSysLevel (Trace System Level)

Controls the priority level of messages that are reported to the Windows Application Event Log or

Unix syslogd. The syslogd messages are recorded to "LOCAL6". Only messages of this value or

lower, as shown below, will be logged. The value defaults to three (3) allowing serious errors to

be recorded. (A value of −1 will disable tracing for release versions of the driver.)

 Page | 143

TraceLogLevel (Trace Log Level)

Controls the priority level of messages that are record to a log file (TraceFileName). Only

messages of this value or lower, as shown below, will be logged. The default value is five (5).

Logging will not occur if TraceFileName is not provided. (A value of −1 will disable tracing for

release versions of the driver.)

TraceLogFlush (Trace Flush Writes)

The default value is zero (0 or not checked). Setting this variable to one (1 or checked) will force

each message to disc before processing continues. This will impact performance.

TraceFileName (Trace Log File Name)

Operating system dependant file name to which logging record will be appended. You must have

write access to the file and directory. Be sure to use a fully qualified location to write the file.

Examples

Unix sample from the command line:

setenv TraceLogLevel 7

setenv TraceFileName /home/user/odbcfile.log

Unix sample of modified DSN (in odbc.ini):

[MSCARD]

driver = 3kodbc

Account = MINISOFT

DSN = MSCARD

Server = 192.168.23.70

Server Port = 30006

User = MGR

ImageDatabase0 = FXIJYO'OD&JXG'D'>

TraceLogLevel = 6

TraceFileName = /home/user/odbcfile.log

Modify the DSN in the Windows registry adding the two values:

 Page | 144

[HKEY_LOCAL_MACHINE\SOFTWARE\ODBC\ODBC.INI\MSCARD]

"TraceLogLevel"="7"

"TraceFileName"="C:\ODBCLOG.LOG"

Added as connection parameters:

url = "jdbc:MSJDBC:///?"

+ "Server=192.168.23.70&"

+ "Server Port=30007&"

+ "User=MGR&"

+ "User Password=PASSWORD&"

+ "Account=MINISOFT&"

+ "TraceFileName=/opt/minisoft/SQL_jdbc0.%p.txt&"

+ "TraceLogLevel=7&"

+ "TraceLogFlush=1&"

+ "Database0=MSCARD.PUB,DOALL,1,1";

TraceFileName

When the trace file name includes the characters %p, these two characters are replaced with the

current process ID. Use this to create separate trace files for each process using the driver.

Logging Levels

Name Value Description

EMERG 0 (not currently used)

ALERT 1 (not currently used)

CRIT 2 (not currently used)

ERR 3
Indicates some failed SQL calls and

communications problems.

WARNING 4
Triggered by any SQL error that

generates a diagnostic record.

 Page | 145

NOTICE 5 (not currently used)

INFO 6

Provides details of the which calls are

made and some other important

markers.

DEBUG 7
Shows the detailed contents of many

calls.

Server (Host) Side Tracing

HP3000

MSJOB supports a number of options for tracing. Using the basic MSTRACE variable enables

most processes for tracing to the job $STDLIST file. You can limit which application is traced by

including the basic name for the application in the MSTRACE variable:

!SETVAR MSTRACEODBCSRVR 7

This will also work for an ODBCSRVR that has been renamed. Tracing of renamed files is based

upon the original name. MSTRACEODBC2262 will not work for an ODBCSRVR that was

renamed to ODBC2262. The output from an instance of a server (individual connection) may be

redirected. You would commonly add the STDLIST= option to the run line for a server.

!FILE LP;DEV=LP,1

!SETVAR MSTRACEODBCSRVR 7

You can use an indirect file to start multiple instances or versions of ODBC. The indirect file

would have the following format. Click here for more info.

30006 0 ODBCSRVR.EXE.MINISOFT;PRI=CS S W

2260 0 ODBC2260.EXE.MINISOFT;PRI=CS;INFO=' S W'

2262 0 ODBC2260.EXE.MINISOFT;PRI=CS;STDLIST=*LP;INFO=' S W'

In the sample above, the ODBCSRVR named ODBC2260 will run on port 2262 and each

connection will use the file equation LP to create a spool file with output. The other ODBCSRVR

processes will trace into the job $STDLIST.

Tracing in MSJOB is documented in (MSJOB - Configuration).

http://www.minisoft.com/pages/middleware/msjob/msjob.htm#Indirect
http://www.minisoft.com/pages/middleware/msjob/msjob.htm

 Page | 146

Unix

The default file name will be /opt/minisoft/odbcjdbc.%p.log, where %p is replaced by the PIN

number of the server.

In inetd.conf (HPUX)

Add a /T parameter to the end of the odbcsrvr line in the /etc/inetd.conf file. You will have to

restart inetd to re-read the configuration file.

odbcsrvr stream tcp nowait root /opt/minisoft/odbcsrvr.exe odbcsrvr.exe

 /S /T:7

As root, restart inetd using the command:

inetd -c

In /etc/xinetd.d/odbcsrvr (Linux)

Add a /T parameter to the end of the odbcsrvr line in the /etc/inetd.conf file. You will have to

restart inetd to re-read the configuration file.

service odbcsrvr

 {

 port = 30006

 socket_type = stream

 wait = no

 user = root

 server = /opt/minisoft/odbcsrvr.exe

 server_args = /S /W /T:7

 log_on_success += DURATION USERID

 log_on_failure += USERID

 disable = no

 }

As root, restart inetd using the command:

service xinetd reload

Using the command line

 Page | 147

Set the environment variables as if you where configuring for the client (see above).

 TraceSysLevel

 TraceLogLevel

 TraceLogFlush

 TraceFileName

cd /opt/minisoft

export TraceLogLevel=7

export TraceLogFlush=1

export TraceFileName=/opt/minisoft/odbcfile.%p.log

/opt/minisoft/odbcsrvr.exe /T:15 /P:30016

Troubleshooting

First UNIX Connection

If you are having problems with connecting for the first time after an installation, follow these

steps:

1. From a terminal logon as root

2. cd /opt/minisoft

3. ./odbcsrvr.exe /T /P:3333

4. Create/Modify a DSN to use port 3333

5. Start a connection using this DSN

6. Stop odbcsrvr using Control-C

7. Look for file with the name odbcjdbc.#.log in the current directory.

The log files will provide details about what is happening during the connection process. If the

problems are not resolved after reviewing these files, please tar and send them to

support@minisoft.com.

mailto:support@minisoft.com

 Page | 148

Using DBUTIL to find database passwords

1. Logon to the HP e3000 as the creator of the database in the group that

contains the database. For example:

 HELLO MGR.DBFILES,DATA

2. Run the utility DBUTIL as shown in Figure 34and enter the command:

 show database passwords

Figure 34

3. Most users should select the highest numbered password shown.

 Page | 149

C. SQL Functions

Using SQL Functions

Function must be entered in escaped ODBC syntax. The functions are entered in the form

{fn function([parm_1[,parm_n]])}.

For example:

select LAST_NAME, FIRST_NAME,

{fn CONCAT(FIRST_NAME,{fn CONCAT(" ",LAST_NAME)})}

from CUSTOMER

where {fn LEFT(LAST_NAME,1)}="A"

SQL Function List

Function Description

String Functions

ASCII

Returns the ASCII code value of the leftmost character of string_exp

as an integer.

{fn ASCII(string_exp)}

CHAR
Returns a character from the value of code (0 to 255).

{fn CHAR(code)}

CHAR_LENGTH
Returns the length of the character string as an integer.

{fn CHAR_LENGTH(string_exp)}

CHARACTER_LENGTH
Returns the length of the character string as an integer.

{fn CHARACTER_LENGTH(string_exp)}

 Page | 150

CONCAT
Returns a character string that consists of the two strings passed.

{fn CONCAT(string_exp1, string_exp2)}

INSERT

Returns a character string where length characters have been

deleted from string_exp1 beginning at start and where string_exp2

has been inserted into string_exp1, beginning at start.

{fn INSERT(string_exp1, start, length, string_exp2)}

LCASE
Returns a string consisting only of lower case characters.

{fn LCASE(string_exp)}

LEFT

Returns the number of characters requested from the left side of the

given string.

{fn LEFT(string_exp,count)}

LENGTH
Returns the length of the character string as an integer.

{fn LENGTH(string_exp)}

LOCATE
Returns the position of a substring within a string as an integer.

{fn LEFT (string_exp1,string_exp2[,start])}

LTRIM
Returns a character string except for any spaces on the left.

{fn LTRIM(string_exp)}

OCTET_LENGTH
Returns the length in bytes of the value as an integer.

{fn OCTET_LENGTH(string_exp)}

REPEAT

Returns string consisting of a given character the requested number

of times.

{fn REPEAT(string_exp,count)}

REPLACE

Search str_exp1 for occurrences of str_exp2 and replace with

str_exp3.

{fn LTRIM(str_exp1,str_exp2,str_exp3)}

RIGHT

Returns the rightmost count characters of string_exp. Returns the

number of characters requested from the left side of the given string.

{fn RIGHT(string_exp,count)}

RTRIM
Returns the characters of string_exp with trailing blanks removed.

{fn LTRIM(string_exp)}

SPACE

Returns a character string consisting of count spaces. Returns the

number of characters requested from the left side of the given string.

{fn SPACE(count)}

SUBSTRING
Extracts one or more characters from a string. Returns the number of

characters requested from the left side of the given string.

 Page | 151

{fn SUBSTRING(string_exp,start,length)}

UCASE

Converts strings to uppercase. Returns the number of characters

requested from the left side of the given string.

{fn UCASE(string_exp)}

Numeric Functions

ABS
Returns the absolute value of numeric_exp.

{fn ABS(numeric_exp)}

CEILING

Returns the smallest integer greater than or equal to numeric_exp.

The return value is of the same data type as the input parameter.

{fn CEILING(numeric_exp)}

FLOOR
Rounds a number down to the nearest (smallest) whole number.

{fn FLOOR(numeric_exp)}

MOD

Returns the remainder (modulus) of integer_exp1 divided by

integer_exp2.

{fn MOD(integer_exp1,integer_exp2)}

ROUND

Rounds a number (value1) down to the number of decimal digits

specified in value2.

{fn ROUND(value1,value2)}

SIGN
Returns a value indicating the sign of the provided value.

{fn SIGN(value)}

Date Functions

CURRENT_DATE
Returns the current host system date.

{fn CURRENT_DATE()}

CURDATE
Returns the current host system date.

{fn CURDATE()}

DAYOFMONTH
Returns a number that consists of the Day portion of a given date.

{fn DAYOFMONTH(date_exp)}

MONTH

Returns a number that consists of the Month portion of a given date.

Returns a number that consists of the Day portion of a given date.

{fn MONTH(date_exp)}

YEAR
Returns a number that consists of the Year portion of a given date.

Returns a number that consists of the Day portion of a given date.

 Page | 152

{fn YEAR(date_exp)}

Misc Functions

IS_NULL
Returns true if the value is NULL.

{fn IS_NULL(value)}

IS_NUMERIC
Returns true if the value represents a number.

{fn IS_NUMERIC(value)}

COALESCE

Returns the first non-null value from the list provided. Used in joins

that can return NULL values.

{fn COALESCE(value1,value2)}

DECODE

Provides an IF THEN ELSE structure in the form,

if (column==test)then value1 else value2.

{fn DECODE(column,test,value1,value2)}

 Page | 153

D. MSJOB on MPE

Controlling MSJOB

You may control MSJOB with either a Windows based application (Server Console) or

from the MPE command line (MSJOBCMD).

 Overview of MSJOB

MSJOB is used to contain the Minisoft Client/Server product server Listeners. Each

product has one or more Listeners. These are controlled by parameters from a

combination of SETVAR calls and indirect files.

Each Listener will start one Process for each connection established. Each Process has a

unique PIN and is the son of the Listener that created it.

Parameters

MSTRACE

This can contain a number from zero (0) to seven (7). Each number gives sequentially

more information about what is happening in the MSJOB processes.

!SETVAR MSTRACE 0

!SETVAR MSTRACE 7

Set to zero (0) to suppress all comments. A value of one (1) will output warnings. Use

two (2) to display informational messages. Use three (3) to output both information and

warnings. Detailed messages are printed when you use four (4). For a complete trace use

seven (7).

Newer servers will accept server specific trace levels. For example;

!SETVAR MSTRACEDATASRVR 7

 Page | 154

NOTE: Use of the ;STDLIST=??? in the MSSERVER###### variable will cause the

trace data to be redirected to the specified file.

DEFAULT: No extra trace is generated.

MSTEMPFM

This parameter controls how middleman services manage MPE temporary files. This will

primarily affect FrontMan and Custom servers. Your choices are to either share the MPE

temporary file space among all processes in the same job or isolate the temporary file for

each connection.

MSTEMPFM 0 temporary files are local to each process tree (connection). MSTEMPFM

1 will allow processes to share temporary files.

DEFAULT: Process local temporary files.

MSFILEEQ

Primarily controls the scope of MPE File Equations. Also controls the equivalent of

logon UDCs.

!SETVAR MSFILEEQ 0

!SETVAR MSFILEEQ 1

!SETVAR MSFILEEQ 2

!SETVAR MSFILEEQ 3

When this value is set to zero or two, File Equations are Global in scope for the job.

When this value is set to one or three, File Equations are Local in scope. Each process in

the job must set any needed file equations.

When this value is set to two or three, a command of MSFILEEQ is issued after the user

is 'logged in'. The normal method of using this would be to have a command file or login

UDC for each user that requires individual file equations.

DEFAULT: Zero (0), Global File Equations.

 Page | 155

MSRUNPRI

Sets the priority the listening processes (MSSERVER and SERVER) will be running at.

Each child process created for individual connections can be set at a different priority

using the ;PRI=?? in the MSSERVER###### line.

!SETVAR MSRUNPRI "CS"

!SETVAR MSRUNPRI "DS"

!SETVAR MSRUNPRI "ES"

NOTE: This will override the job priority for MSSERVER and SERVER. As the two

processes involved do not run for more than a fraction of a second each pass, no system

performance degradation should be seen. Running these at too low a priority will result in

connection timeout failures.

DEFAULT: Both MSSERVER and SERVER will run at the job priority.

MSSERVER######

The MSSERVER###### variable is used to specify: port number, maximum users, and

RUN string for each Listener. Alternatively, MSSERVER###### can use an indirect file.

Each Listener can create Processes at a given priority.

!SETVAR MSSERVER000004 &

! "30006 0 ODBCSRVR.MM.MINISOFT;PRI=DS S"&

!+"|31006 0 ODBCSRVR.MM.MINISOFT;PRI=CS S"

This will start two Listeners. Clients that connect to port 30006 will operate in the "D"

queue. Clients that connect to port 31006 will operate in the "C" queue.

The second value will usually be zero (0). This value specifies the maximum number of

concurrent connections on this port. Valid values are 0 to 255. Zero (0) indicates an

indefinite number of connections.

Each connection can specify a different version of the server program (ODBCSRVR in

this case). This is used while transitioning to a new version of the server when you can

not change all the client software at the same time.

 Page | 156

Indirect File

Each line of the file would contain the specification for connection. MSJOB would

contain the following line:

!SETVAR MSSERVER000005 "^JDBC0001"

The file JDBC0001 can contain the following lines:

30007 0 JDBCSRVR.MM.MINISOFT;PRI=DS S

31007 0 JDBC2171.MM.MINISOFT;STDLIST=TRACEFIL;PRI=DS S

Control

Start MSJOB by streaming the file MSJOB.MM.MINISOFT.

MSJOB may be controlled by either Server Console or MSJOBCMD. These utilities

allow you to view into and control MSJOB, the Listeners, and the Processes.

Sample

!JOB MSJOB,MGR.MINISOFT,MM;OUTCLASS=LP,1

!COMMENT

!COMMENT For use with MSSERVER 2.3.1.5 or later

!COMMENT For use with SERVER 2.3.1.4 or later

!COMMENT

!COMMENT MSTRACE 1 to output warnings

!COMMENT MSTRACE 3 to output information and warnings

!COMMENT MSTRACE 7 to output detailed trace

!COMMENT

!COMMENT MSTEMPFM 0 temp files are local to each process.

!COMMENT MSTEMPFM 1 will allow processes to share temp files.

!COMMENT

!COMMENT MSFILEEQ 0 File equations are job global

!COMMENT MSFILEEQ 1 File equations are process local

!COMMENT MSFILEEQ 2 File equations are job global (XEQ MSFILEEQ)

!COMMENT MSFILEEQ 3 File equations are process local (XEQ MSFILEEQ)

!COMMENT

!COMMENT MSRUNPRI sets the priority of the listener processes

!COMMENT Use the ;PRI= option for each server

!COMMENT

!SETVAR MSTEMPFM 0

!SETVAR MSFILEEQ 0

!SETVAR MSRUNPRI "CS"

 Page | 157

!SETVAR TZ,"PST8PDT "

!COMMENT

!SETVAR MSSERVER000002 "30001 0 NFTSRVR.MM.MINISOFT;PRI=DS;INFO=' S'"

!SETVAR MSSERVER000004 "30006 0 ODBCSRVR.MM.MINISOFT;PRI=DS;INFO=' S'"

!SETVAR MSSERVER000005 "30007 0 JDBCSRVR.MM.MINISOFT;PRI=DS;INFO=' S'"

!SETVAR MSSERVER000008 "30002 0 DATASRVR.MM.MINISOFT;PRI=DS;INFO=' S'"

!RUN MSSERVER.MM.MINISOFT;INFO="30000 SERVER.MM.MINISOFT"

!EOJ

Server Console

The Minisoft server console application can be used to monitor and control the

background MSJOB. You can view a list of the current users and optionally stop

individual processes or the job.

The logon must be from a valid OP capable user in order to take full advantage of the

console features.

The operator can selectively start or stop any licensed Client Server product. The operator

may also stop any individual user process without affecting other users.

Operation

Enter the Host name or IP address. By default, MSSERVER listens on port 30000. You

must supply a valid user with OP capability.

The top window will show the waiting servers.

After selecting the server you wish to view; the bottom window displays the active

sessions including pin number, program executing, logon user, and cumulative CPU time

for the process.

You can select a single server or process to stop. By selecting a server, all the processes

that have started under it will be stopped

MSJOBCMD

You must have SM or OP capability to use this utility.

The 'loopback' feature of you network interface must be started. Use "NETCONTROL

START;NET=LOOP"

 Page | 158

This application is designed to run from a JOB or SESSION on the HP e3000 that is

running the Minisoft Client Server listener (MSJOB). The purpose of this utility is to

display the current users of MSJOB and to optionally stop the MSJOB.

Options

PARM=0

Display current listeners and connections.

PARM=1

Display current listeners and connections. If no current connections, then stop the job or

listener.

PARM=2

Display current listeners and connections. Stop the job or listener regardless of the users.

PARM=3

Display current listeners and connections.

PARM=4

Start a listener using the INFO parameter. Use a format similar to the MSJOB indirect

file.

INFO="5|30007|0|JDBCSRVR.MM.MINISOFT;PRI=DS S"

PARM=5

Kill all processes of a listener, leave the listener active.

INFO=(port number)

Port number to use for above commands. If not given, then PARM values apply to job.

Details

RUN MSJOBCMD;PARM=0 Will display the current users.

RUN MSJOBCMD;PARM=1 Will display the current users and optionally stop the job if

 Page | 159

the number of users is zero.

RUN MSJOBCMD;PARM=2 Will display the current users and stop the job regardless

of the number of users.

RUN MSJOBCMD;PARM=2;INFO="30006" Will display the current users for the

listener on port 30006 and stop the it regardless of the number of users.

Output JCWs

MSJOBUSERCOUNT

MSJOBSHUTDOWN

MSJOBUSERCOUNT is used to display the total number of active server connections on

this server. The value will be -1 if there is an error.

MSJOBSHUTDOWN will be set to TRUE if a shutdown command is sent to the JOB.

Otherwise it will be set to FALSE.

Input JCWs

MSJOBPORT

MSTIMEOUT

MSTRACE

Set MSJOBPORT to the value of your MSSERVER port. The default value is 30000.

Set MSTIMEOUT to the number of seconds to wait for a connection. The default is 60.

Set MSTRACE to 7 to display the version number. The default is zero.

IP Security

Overview

New in version 2.3.1.7 of SERVER.MM.MINISOFT is the ability to block connection

based upon IP address.

 Page | 160

Parameters

One MPE file per port number to be filtered. If the file exists block all connections

except those included. Local Loop address is always accepted.

(127.0.0.1:255.255.255.255)

Sample

For a server configured to listen on port 30001:

:print ip30001

209.42.12.0:255.255.255.128

209.43.231.0:255.255.255.0

209.44.0.0:255.255.0.0

This would permit connections from:

209.42.12.1 to 209.42.12.127

209.43.231.1 to 209.43.231.254

209.44.0.1 to 209.44.255.254

 Page | 161

Index

A

Adding data... 118

C

Catalog Editor ... 74

Classes of JDBC ... 111

Connecting to a database 112

Connecting using connection properties 112

Connection Class .. 111

Connection Methods .. 121

close ... 122

commit ... 122

createStatement .. 121

getMetaData .. 122

PrepareStatement ... 121

rollback .. 122

setAutoCommit .. 121

Creating a ResultSet object 113

Creating a Statement Object 113

D

DatabaseMetaData Methods 127

getColumns .. 128

getIndexInfo ... 129

getTables ... 127

Deleting data .. 118

DriverManager class .. 111

DriverManager Methods

getConnection ... 119

E

Exiting JDBC .. 114

F

FAQ .. 139

G

getConnection .. 119

I

Interfaces of JDBC .. 111

M

Metadata ... 116

 Page | 162

P

Prepared Parameters .. 115

Prepared Statements .. 115

PreparedStatement Methods 123

clear Parameters .. 124

executeQuery .. 123

executeUpdate .. 124

R

Registering the driver ... 111

ResultSet Class ... 111

ResultSet Methods ... 125

close ... 125

findColumn .. 126

getMetaData .. 126

next .. 125

ResultSetMetaData Methods 126

getColumnCount .. 126

getColumnDisplaySize .. 126

getColumnName .. 127

getColumnType .. 127

S

Schema Editor .. 51

Create Blank Schema ... 56

Security, Catalog .. 46

Security, Context .. 15

Security, IP ... 159

Statement Class ... 111

Statement Methods ... 123

close .. 123

executeQuery .. 123

executeUpdate .. 123

T

Tracing Facilities ... 141

Client ... 141

Server .. 145

U

Updating data .. 118

FINI

